Math 2415
 Homework on 14.7 (Local)

1. Find and classify the critical points of $f(x, y)=x^{3}+y^{3}-3 x^{2}-6 y^{2}$.
2. Find and classify the critical points of $f(x, y)=-3 x^{2}-4 x y-y^{2}-12 y+16 x$.
3. Find the local maxima, minima, and saddle points, if any, of a function $f(x, y)$ whose partial derivatives are $f_{x}=9 x^{2}-9, f_{y}=2 y+4$.
4. Find all local maxima, local minima, and saddle points of the following functions
(a) $f(x, y)=2 x y-5 x^{2}-2 y^{2}+4 x+4 y-4$
5. Each of the following functions has a critical point at the origin. Show that the second derivative test fails there. Determine whether the functions has a local maximum, local minimum, or saddle point at the origin by visualizing what the surface $z=f(x, y)$ looks like. Describe your reasoning.
(a) $f(x, y)=x^{2} y^{2}$
(b) $f(x, y)=1-x y^{2}$
