Math 2415 Homework on 15.8

1. Find $\iiint_{E}\left(1+x+y^{2}\right) d V$ where E is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
2. Evaluate the integral $\iiint_{E} z d V$, where E is the solid bounded by the spheres $x^{2}+$ $y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
3. Let E be the three-dimensional region bounded by the surfaces $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}=1$. Compute the volume of E.
4. Find $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) x y z d V$ where E is
(a) The ball $x^{2}+y^{2}+z^{2} \leq R^{2}$
(b) The one-eighth ball $x^{2}+y^{2}+z^{2} \leq R^{2}$ with $x \geq 0, y \geq 0$, and $z \geq 0$.

Here R is a non-zero constant. Hint: You can use symmetry to simplify the calculation for at least one of these regions.

