## Math 2415 Homework on 15.9

1. Solve for $x$ and $y$ in terms of $u$ and $v$ and then compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
(a) $u=x^{2}-y^{2}, v=x+y$
2. Let $R$ be the parallelogram bounded by the lines $3 x+2 y=1,3 x+2 y=5,2 x-4 y=-2$, $2 x-4 y=1$.
(a) Use the change of variables $u=3 x+2 y, v=2 x-4 y$ to find it's area $A=$ $\iint_{R} 1 d x d y$
(b) Check that you get the same answer by using the formula $A=|\mathbf{a} \times \mathbf{b}|$, where $\mathbf{a}$ and $\mathbf{b}$ are two vectors which together determine the paralellogram.
(c) Calculate $\iint_{R} x d x d y$.
3. Let $S$ be the unit square in the $u v$-plane with vertices $(0,0),(1,0),(0,1)$ and $(1,1)$ and let $D$ be the circle $u^{2}+v^{2}=1$ in the $u v$-plane. Find the images of $S$ and $D$ under the following transformations.
(a) $x=3 u+2 v, y=2 u-4 v$
4. Evaluate $\iint_{R}(x+2 y)(y-3 x) d A$ where $R$ is the parallelogram enclosed by the lines $x+2 y=-4, x+2 y=3, y-3 x=-1, y-3 x=5$.
5. Use elliptical coordinates $x=3 r \cos \theta$ and $y=2 r \sin \theta$ to find the volume bounded by the paraboloid $z=x^{2}+y^{2}$, the plane $z=0$ and the elliptical cylinder $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
6. Use the change of variables $u=y / x^{2}, v=x / y^{2}$ to find the area of the region in the first quadrant that is bounded by the curves $y=x^{2}, y=3 x^{2}, x=y^{2}$ and $x=4 y^{2}$.
