Math 2415 Homework on 16.2

1. Evaluate $\int_{C} f d s$ where C has parametrization \mathbf{r} with
(a) $\mathbf{r}(t)=(5 \sin t, 12 t, 5 \cos t)$ for $0 \leq t \leq 4 \pi$ and $f(x, y, z)=y+z$.
(b) $\mathbf{r}(t)=\left(t, t^{2}, 1\right)$ for $0 \leq t \leq 2$ and $f(x, y, z)=x$.
2. Evaluate $\int_{C} \sqrt{x+y} d s$ where C is the concatenation of two curves C_{1} and C_{2}, with C_{1} being the line segment from $(0,0)$ to $(1,0)$ and C_{2} is the line segment from $(1,0)$ to $(1,2)$.
3. Find the mass of the wire that is modeled by the quarter circle, $x^{2}+y^{2}=1$ with $x \geq 0$ and $y \geq 0$, and whose density is $f(x, y)=x+y$.
4. Suppose that a vertical wall has a base in the shape of the parabola $x=y^{2}$ for $0 \leq y \leq 4$ and height given by $z=f(x, y)=y+\sqrt{x}$. Calculate the area of the wall.
5. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C has parametrization \mathbf{r} with $\mathbf{r}(t)=(\cos t, \sin t, 2 t)$ for $0 \leq$ $t \leq \pi$ and $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$.
6. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=x \cos (y) \mathbf{i}+x y z \mathbf{k}$ and C is parametrized by $\mathbf{r}(t)=$ $t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$, for $0 \leq t \leq 2$.
7. Compute the work done by the force $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ on a particle whose position at time t is given by $\mathbf{r}(t)=(1+\sin t) \mathbf{i}+\left(1+\sin ^{2} t\right) \mathbf{j}$ for $0 \leq t \leq \frac{\pi}{2}$.
8. Evaluate $\int_{C} y z d y+x y d z$ where C is the curve given by $x=\sqrt{t}, y=t, z=t^{2}$ for $1 \leq t \leq 2$.
