Math 2415
 Homework on 16.3

1. Show that the vector field $\mathbf{F}(x, y)=\left(1-y e^{-x}\right) \mathbf{i}+e^{-x} \mathbf{j}$ is conservative. Find a function f so that $\mathbf{F}=\nabla f$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve $\mathbf{r}(t)=e^{t} \mathbf{i}+\sin t \mathbf{j}$, for $0 \leq t \leq \pi / 2$.
2. Determine whether the vector field, \mathbf{F}, is conservative or not. If it is, find a potential function, f, so that $\mathbf{F}=\nabla f$.
(a) $\mathbf{F}(x, y)=7 e^{x} \sin y \mathbf{i}+7 e^{x} \cos y \mathbf{j}$
(b) $\mathbf{F}(x, y)=\left(3 x^{2}+2 y^{2}\right) \mathbf{i}+\left(4 x y+6 y^{2}\right) \mathbf{j}$
3. Show that the given line integral is independent of path, then calculate the value of the line integral.
(a) $\int_{C}(\sin y+y \cos x) d x+(\sin x+x \cos y) d y$, where C goes from $(\pi / 2, \pi / 2)$ to (π, π).
4. Let $\mathbf{F}(x, y)=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be a constant vector field. Show that no work is done by \mathbf{F} on a particle that goes once around a closed curve.
