Math 2415 Homework on 16.4

- 1. Use Green's Theorem to evaluate $\int_C y^3 dx x^3 dy$ where C is the circle $x^2 + y^2 = 9$ oriented clockwise.
- 2. Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem: $\int_C -y\mathbf{i} + x\mathbf{j}$ where C is the circle $x^2 + y^2 = R^2$ traversed counterclockwise.
- 3. Use Green's Theorem to calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where
 - (a) $\mathbf{F}(x,y) = (x-y)\mathbf{i} + (y-x)\mathbf{j}$ and C is the boundary of the square $[0,1] \times [0,1]$ traversed clockwise.
- 4. Find the area of the region between the graphs $y = x^2$ and $y = x^3$.