MATH 2415 Calculus of Several Variables
 Fall-2019

PLTL Packet\# 1(Sec 12.1, 12.2, 12.3)

1. Given point $P(-3,4,-6)$ find the following.
(a) the projection onto the coordinate planes: $x y, y z$ and $x z$-plane.
(b) the distance from the coordinate planes: $x y, y z$ and $x z$-plane.
(c) the distance from the coordinate axes: x, y and z-axis.
(d) the distance from origin.
2. Find the equation of the following spheres
(a) center $=(-3,4,-1)$ and radius $=3$
(b) center $=(-3,4,-1)$ and through the point $(0,3,1)$
(c) center $=(-3,4,-1)$ and touches the $x z-$ plane.
(d) one of the diameter has end points at $(0,1,3)$ and $(-6,7,-5)$
3. Describe the intersection of each of the spheres in Q.N. $\# 2$ with each of the coordinate planes.
4. Show that the equation $3 x^{2}+3 y^{2}+3 z^{2}+6 x+12 z=80$ represents a sphere. Find its center and radius.
5. Given vectors $\mathbf{a}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}-2 \mathbf{k}$, find
(a) $\mathbf{a}+\mathbf{b}$
(b) $3 \mathbf{a}-2 \mathbf{b}$
(c) $|\mathbf{a}|$
(d) $|2 \mathbf{a}-\mathbf{b}|$.
(e) $\hat{\mathbf{a}}$, the unit vector in the direction of \mathbf{a}.
(f) $\mathbf{u}=\mathrm{a}$ vector with length 3 but is in opposite direction to \mathbf{a}.
6. Find $\mathbf{u} \cdot \mathbf{v}$
(a) $\mathbf{u}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-2 \mathbf{k}$
(b) $|\mathbf{u}|=5,|\mathbf{v}|=2$ and the angle between \mathbf{u} and \mathbf{v} is $\frac{\pi}{3}$
(c) $\mathbf{u}=\langle 2,-3,5\rangle, \mathbf{v}=\langle-3,5,2\rangle$
7. Find the scalar and vector projections of \mathbf{u} onto \mathbf{v}
(a) $\mathbf{u}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-2 \mathbf{k}$
(b) $\mathbf{u}=\langle 2,-3,5\rangle, \mathbf{v}=\langle-3,5,2\rangle$
8. Determine all real values of t so that angle between the vectors $\langle 3-t, 5+t,-8\rangle$ and $\langle-8,3-t, 5+t\rangle$ is $\frac{2 \pi}{3}$.
