MATH 2415 Calculus of Several Variables Fall-2019

PLTL Packet# 2(Sec 12.4-12.5)

- 1. Given $\mathbf{u} = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 3\mathbf{j} \mathbf{k}$
 - (a) Find the cross product $\mathbf{u} \times \mathbf{v}$.
 - (b) Find a vector that is orthogonal to \mathbf{u} and \mathbf{v} both.
 - (c) Find a vector that is orthogonal to **u** and **v** both and has length π .
 - (d) Let θ ($0 \le \theta \le \pi$) be the angle between **u** and **v**, find $\sin \theta$.
 - (e) Find the area of parallelogram with adjacent sides represented by ${\bf u}$ and ${\bf v}.$
- 2. Given P(1,1,1), Q(3,-2,5), R(4,1,4) three points in space.
 - (a) Find a vector that orthogonal to the plane through P, Q, R.
 - (b) Find the area of the $\triangle PQR$.
 - (c) Let P, Q, R, S be four corners of a parallelogram. Find the area of the parallelogram.
- 3. Given three vectors $\mathbf{u} = 2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 3\mathbf{j} \mathbf{k}$, and $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.
 - (a) Calculate the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.
 - (b) Find the volume of the parallelopiped whose adjacent edges are represented by the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
 - (c) Are the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ coplanar? Explain.
- 4. Find $|\mathbf{u} \times \mathbf{v}|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.

- 5. Given P(1, 1, 1), Q(3, -2, 5), R(4, 1, 4), S(3, 6, 1) points in space,
 - (a) find the volume of the parallelopiped with adjacent edges PQ, PS, and PR.
 - (b) find the volume of the parallelopiped with adjacent edges SR, SQ, and SP.

- 6. Find the vector equation and parametric equations of the following lines.
 - (a) passing through the point (2, 3, -2) and parallel to the vector (3, -2, 5).
 - (b) passing through the points (2, 3, -2) and (3, -2, 5).
 - (c) passing through the point (2, 3, -2) and parallel to the vector (3, 0, 5).
 - (d) passing through the points (2, 3, -2) and (3, 3, 5).
 - (e) passing through the point (2, 3, -2) and perpendicular to the plane 2x + 3y + 5z = 0.
 - (f) passing through the point (2, 3, -2) and perpendicular to the plane 2x + 3y + 5z = 10.
 - (g) passing through the point (2, 3, -2) and perpendicular to the plane 3y + 5z = 0.
- 7. Find the point at which each of the line in Q.N.#6 intersects yz-plane. Also, find the point where each of the line intersects y-axis.
- 8. Find the vector equation and parametric equations of the line segment joining the points (2, 3, -2) and (3, -2, 5). Determine whether the line segment intersects each of the following planes. If yes, find the point of intersection. If no, explain.
 - (a) 2x + 3y + 5z = 10
 - (b) 2x + 3y + 5z = 110