MATH 2415 Calculus of Several Variables
 Fall-2019

PLTL Packet\# 2(Sec 12.4-12.5)

1. Given $\mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}$
(a) Find the cross product $\mathbf{u} \times \mathbf{v}$.
(b) Find a vector that is orthogonal to \mathbf{u} and \mathbf{v} both.
(c) Find a vector that is orthogonal to \mathbf{u} and \mathbf{v} both and has length π.
(d) Let $\theta(0 \leq \theta \leq \pi)$ be the angle between \mathbf{u} and \mathbf{v}, find $\sin \theta$.
(e) Find the area of parallelogram with adjacent sides represented by \mathbf{u} and \mathbf{v}.
2. Given $P(1,1,1), Q(3,-2,5), R(4,1,4)$ three points in space.
(a) Find a vector that orthogonal to the plane through P, Q, R.
(b) Find the area of the $\triangle P Q R$.
(c) Let P, Q, R, S be four corners of a parallelogram. Find the area of the parallelogram.
3. Given three vectors $\mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}, \mathbf{v}=\mathbf{i}+3 \mathbf{j}-\mathbf{k}$, and $\mathbf{w}=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(a) Calculate the scalar triple product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.
(b) Find the volume of the parallelopiped whose adjacent edges are represented by the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$.
(c) Are the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ coplanar? Explain.
4. Find $|\mathbf{u} \times \mathbf{v}|$ and determine whether $\mathbf{u} \times \mathbf{v}$ is directed into the page or out of the page.
(a)

(b)

5. Given $P(1,1,1), Q(3,-2,5), R(4,1,4), S(3,6,1)$ points in space,
(a) find the volume of the parallelopiped with adjacent edges $P Q, P S$, and $P R$.
(b) find the volume of the parallelopiped with adjacent edges $S R, S Q$, and $S P$.
6. Find the vector equation and parametric equations of the following lines.
(a) passing through the point $(2,3,-2)$ and parallel to the vector $\langle 3,-2,5\rangle$.
(b) passing through the points $(2,3,-2)$ and $(3,-2,5)$.
(c) passing through the point $(2,3,-2)$ and parallel to the vector $\langle 3,0,5\rangle$.
(d) passing through the points $(2,3,-2)$ and $(3,3,5)$.
(e) passing through the point $(2,3,-2)$ and perpendicular to the plane $2 x+3 y+5 z=0$.
(f) passing through the point $(2,3,-2)$ and perpendicular to the plane $2 x+3 y+5 z=10$.
(g) passing through the point $(2,3,-2)$ and perpendicular to the plane $3 y+5 z=0$.
7. Find the point at which each of the line in Q.N. $\# 6$ intersects $y z$-plane. Also, find the point where each of the line intersects y-axis.
8. Find the vector equation and parametric equations of the line segment joining the points $(2,3,-2)$ and $(3,-2,5)$. Determine whether the line segment intersects each of the following planes. If yes, find the point of intersection. If no, explain.
(a) $2 x+3 y+5 z=10$
(b) $2 x+3 y+5 z=110$
