Math 2415

Paper Homework \#1

1. [12.2 \& 12.3, Vectors and Dot Products] Let C be the point on the line segment $A B$ that is twice as far from A and it is from B, and let O denote the origin. Let $\mathbf{a}=\overrightarrow{O A}, \mathbf{b}=\overrightarrow{O B}$, and $\mathbf{c}=\overrightarrow{O C}$.
(a) Make a sketch showing the relationships between all these points and vectors.
(b) Express $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
(c) Hence express $\overrightarrow{A C}$ in terms of \mathbf{a} and \mathbf{b}.
(d) Hence find a formula for \mathbf{c} in terms of \mathbf{a} and \mathbf{b}.
(e) Now also suppose that $\mathbf{a} \perp \mathbf{b}$ and $|\mathbf{b}|=1$. Find the scalar projection of \mathbf{c} onto \mathbf{b}. Hint: Your answer should be a number.
(f) Calculate \mathbf{c} in the special case that $\mathbf{a}=\mathbf{i}$ and $\mathbf{b}=\mathbf{j}$. Is your answer consistent with your answer to (e)?
2. [12.3, Dot Products] In this problem you will find two unit vectors that each make an angle of 30° with the vector $\mathbf{v}=(3,4)$.
(a) Make a sketch that explains why there are precisely two such vectors \mathbf{u}.
(b) Let $\mathbf{u}=(a, b)$ be one such vector. Write down an equation in terms of a and b that encodes the fact that $|\mathbf{u}|=1$. Write down an equation in terms of a and b that encodes the fact that the angle between \mathbf{u} and \mathbf{v} is 30°.
(c) Now you have two simultaneous equations in two unknowns, a and b. Solve them by eliminating one of the variables to obtain a quadratic equation for the other.
(d) Hence find the two unit vectors.
(e) Check your answers are correct.
