Math 2415

Paper Homework \#11

1. 15.7, Triple Integrals in Cylindrical Coordinates

(a) Sketch the solid region, E, in the first octant that is bounded by the cylinder $y^{2}+z^{2}=$ 16 and the plane $x+y=4$. Use a triple integral in cylindrical coordinates to find $\iiint_{E} \sqrt{y^{2}+z^{2}} d V$.
(b) Find $\iiint_{E}\left(x^{2}+y^{2}\right) d V$ where E is the solid region above the $x y$-plane, below the paraboloid $z=8-x^{2}-y^{2}$ and outside the cylinder $x^{2}+y^{2}=1$. Sketch the solid E.

2. 15.8, Triple Integrals in Spherical Coordinates

(a) Evaluate the integral $\iiint_{E} z d V$, where E is the solid bounded by the spheres $x^{2}+y^{2}+$ $z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
(b) Find the volume of the region inside the ball $x^{2}+y^{2}+z^{2} \leq R^{2}$ that lies between the cones $z=\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{3 x^{2}+3 y^{2}}$.

3. 16.1, Vector Fields

(a) Match the vector fields \mathbf{F} with the plots labeled A-D. Briefly explain your reasoning.
i. $\mathbf{F}(x, y, z)=x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}$
ii. $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}$
iii. $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
iv. $\mathbf{F}(x, y, z)=-x \mathbf{i}-z \mathbf{k}$

A

C

B

D

