Math 2415

Paper Homework \#12

1. 16.2, Line Integrals:
(a) Evaluate $\int_{C} f d s$ where C has parametrization \mathbf{r} with $\mathbf{r}(t)=\left(t, t^{2}, 1\right)$ for $0 \leq t \leq 2$ and $f(x, y, z)=x$.
(b) Evaluate $\int_{C} y z d y+x y d z$ where C is the curve given by $x=\sqrt{t}, y=t, z=t^{2}$ for $1 \leq t \leq 2$.
2. 16.3, Conservative Vectors and FTC for Line Integrals: Consider the vector field

$$
\mathbf{F}(x, y)=\left(1-y e^{-x}\right) \mathbf{i}+e^{-x} \mathbf{j} .
$$

(a) Show that \mathbf{F} is a conservative vector field.
(b) Find a function f so that $\mathbf{F}=\nabla f$.
(c) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve $\mathbf{r}(t)=e^{t} \mathbf{i}+\sin t \mathbf{j}$, for $0 \leq t \leq \pi / 2$.
3. 16.4, Green's Theorem: Use Green's Theorem to calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=(6 y+$ $x) \mathbf{i}+(y+2 x) \mathbf{j}$ and C is the circle $(x-2)^{2}+(y-3)^{2}=4$ traversed clockwise.

