Math 2415

Paper Homework \#9

1. 14.8, Constrained Optimization: Use the method of Lagrange Multipliers to find the absolute maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}-x-y+1$ on the unit disc $x^{2}+y^{2} \leq 1$. To the extent possible solve the problem using a geometric method (a picture) as well as algebraically.
2. 15.1: Double Integrals over Rectangles: Let V be the volume of the solid bounded by the $x z$-plane, the $y z$-plane, the $x y$-plane, the planes $x=1$ and $y=2$ and the surface $z=f(x, y)=(x y)^{2} e^{x^{3}}$.
(a) Estimate V using a Riemann sum with 4 equal sized rectangles with $\Delta x=0.5$ and $\Delta y=1$ and evaluate f at the midpoints of the rectangles.
(b) Set up an iterated double integral for V.
(c) Evaluate this integral.

3. 15.2: Double Integrals over General Regions:

(a) Find the volume of the solid region that is below the cylinder $z=x^{2}$ and above the region in the in the $x y$-plane enclosed by the parabola $y=2-x^{2}$ and the line $y=x$.
(b) Evaluate $\int_{0}^{2} \int_{y / 2}^{1} y e^{x^{3}} d x d y$.

