Math 2415

Problem Section #10

Make sure you do some problems from each section.

15.3, Double Integrals in Polar Coordinates

- 1. Evaluate $\iint_D e^{x^2+y^2} dA$, where *D* is the region in the 1st quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 2. Evaluate $\iint_D \cos(x^2 + y^2) dA$, where *D* is the region bounded by the semicircle $x = \sqrt{9 y^2}$ and the *y*-axis.
- 3. Calculate the volume of the solid under $z = x^2 + y^2$ and above $x^2 + y^2 \le 16$.
- 4. Calculate the volume of the solid below the plane x + 2y + 3z = 6 and above $x^2 + y^2 \le 1$.
- 5. Evaluate the integral by converting to polar coordinates: $\int_0^R \int_{-\sqrt{R^2 x^2}}^{\sqrt{R^2 x^2}} (x + 2y) \, dy \, dx.$

15.6, Triple Integrals in Rectangular Coordinates

- 1. Sketch the region bounded by the following surfaces. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then use a triple integral to calculate the volume of the solid.
 - (a) $z = x^2 + y^2$, x = 0, y = 0, z = 0, x + y = 1.
 - (b) $x = z^2$, $x = 8 z^2$, y = 1, y = 3.
 - (c) $y = z^2$, y = z, x + y + z = 2, x = 0
- 2. Evaluate $\iiint_E y \, dV$, where *E* is the solid bounded by the surfaces $z = 2 x^2$, $z = x^2 2$, y = 0 and y = 1.
- 3. Find the volume of the solid enclosed by the cylinder $x = z^2$ and the planes y = 0 and y + z = 2.