Math 2415
 Problem Section \#5

Make sure you do some problems from each section.

13.2 \& 13.3: Calculus of Curves

1. This question asks you to review your understanding of the geometric meaning of the derivative of a parametrized curve.
(a) Make a sketch of the curve $(x, y)=\mathbf{r}(t)=\left(t^{2}, t\right)$ for $0 \leq t \leq 2$.
(b) Add the vectors $\mathbf{r}(1), \mathbf{r}(1.1)$, and $\mathbf{r}(1.1)-\mathbf{r}(1)$ to your sketch. [Don't worry about getting the points exactly correct!]
(c) Calculate the tangent vector, $\mathbf{r}^{\prime}(1)$, and add it to your sketch.
(d) Calculate the secant vector

$$
\frac{\mathbf{r}(1.1)-\mathbf{r}(1)}{0.1}
$$

add it to your sketch, and explain why it is almost the same as $\mathbf{r}^{\prime}(1)$.
2. Let C be the curve in \mathbb{R}^{2} parametrized by $\mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}$, for $-2 \leq t \leq 2$.
(a) Show that the curve C is given by $x^{2}=y^{3}$.
(b) Sketch the curve C. Hint: C has a cusp at the origin.
(c) Calculate $\mathbf{r}^{\prime}(0)$.
(d) Suppose now that \mathbf{r} is the position of a particle moving in the plane as a function of time. Describe the motion of the particle, especially near $t=0$.
(e) Calculate the speed and the acceleration vector of the particle at time $t=1$.
3. Let C be the curve $(x, y, z)=\mathbf{r}(t)=\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}$ for $0 \leq t \leq 2$.
(a) Parametrize the tangent line to C at $t=1$ in such a way that the motion along the tangent line is a good approximation to the motion along the curve near $t=1$.
(b) Set up a one-dimensional integral for the length of C.
(c) [Trick] Show that the function under the square root in the integrand is a perfect square, that is it can be expressed in the form $[g(t)+h(t)]^{2}$ for some functions g and h.
(d) Hence, evaluate the integral.
(e) If we changed the curve to $(x, y, z)=\mathbf{r}(t)=\sqrt{3} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}$ could you still do the problem? Why? Hint: Nope!!
4. Let C be the curve $(x, y, z)=\mathbf{r}(t)=t^{2} \mathbf{i}+9 t \mathbf{j}+4 t^{3 / 2} \mathbf{k}$ for $0 \leq t \leq 1$. Use the same trick as in the previous problem to calculate the length of C.

14.1, Functions of Several Variable

1. Let $z=f(x, y)=e^{-x-y}$. Sketch the contours of $f(x, y)=k$ for $k=0.5, k=1, k=2$. Use this information to help you sketch the graph of f.
2. Sketch a contour map for the function $z=f(x, y)=y^{1 / 3}+x$. Hint: Solve $y^{1 / 3}+x=k$ for y in terms of x.
3. 14.1.61
4. 14.1.62
5. You could also try 14.1.63-14.1.66 if you like!

Exam I Review

1. (From Fall 2010, Exam 1) Find the traces (i.e., slices) of the surface

$$
x^{2}=1+\frac{y^{2}}{4}+\frac{z^{2}}{9}
$$

in the planes $y=0, z=0$, and $x=k$, for $k=0, \pm 1, \pm 2, \pm 3$. Then sketch the surface and name it.
2. (From Fall 2009, Exam 1)
(a) Find a vector parametric equation for the line through the point $(1,2,-1)$ that is normal to the plane $2 x-y+3 z=12$.
(b) Find a parametrization of the plane containing the point $(1,-2,1),(2,-1,0)$ and $(3,-2,2)$.

