Math 2415

Paper Homework \#11

1. 15.6, Triple Integrals in Rectangular Coordinates:

(a) Sketch the region bounded by the surfaces $y+z=4, y=4-x^{2}, y=0, z=0$. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then use a triple integral to calculate the volume of the solid.
(b) Sketch the solid, E, in the first octant that is bounded by the planes $x+z=2$ and $2 y+z=2$. Calculate $\iiint_{E} z d V$.

2. 15.7, Triple Integrals in Cylindrical Coordinates

(a) Sketch the solid region, E, in the first octant that is bounded by the cylinder $y^{2}+z^{2}=$ 16 and the plane $x+y=4$. Use a triple integral in cylindrical coordinates to find $\iiint_{E} \sqrt{y^{2}+z^{2}} d V$.
(b) Find $\iiint_{E}\left(x^{2}+y^{2}\right) d V$ where E is the solid region above the $x y$-plane, below the paraboloid $z=8-x^{2}-y^{2}$ and outside the cylinder $x^{2}+y^{2}=1$. Sketch the solid E.

3. 15.8, Triple Integrals in Spherical Coordinates

(a) Evaluate the integral $\iiint_{E} z d V$, where E is the solid bounded by the spheres $x^{2}+y^{2}+$ $z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
(b) Find the volume of the region inside the ball $x^{2}+y^{2}+z^{2} \leq R^{2}$ that lies between the cones $z=\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{3 x^{2}+3 y^{2}}$.

