Math 2415

Paper Homework \#12

1. 15.9, Change of Variables Theorem:

(a) Let R be the parallelogram bounded by the lines $3 x+2 y=1,3 x+2 y=5,2 x-4 y=-2$, $2 x-4 y=1$.
i. Use the change of variables $u=3 x+2 y, v=2 x-4 y$ to find the area of R, ie find $A=\iint_{R} 1 d x d y$.
ii. Check that you get the same answer by using the formula $A=|\mathbf{a} \times \mathbf{b}|$, where \mathbf{a} and b are two vectors which together determine the paralellogram.
iii. Calculate $\iint_{R} x d x d y$.
(b) Let S be the unit square in the $u v$-plane with vertices $(0,0),(1,0),(0,1)$ and $(1,1)$ and let D be the circle $u^{2}+v^{2}=1$ in the $u v$-plane. Find the images of S and D under the transformation $x=3 u+2 v, y=2 u-4 v$
(c) Use elliptical coordinates $x=3 r \cos \theta$ and $y=2 r \sin \theta$ to find the volume bounded by the paraboloid $z=x^{2}+y^{2}$, the plane $z=0$ and the elliptical cylinder $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
(d) Use the change of variables $u=y / x^{2}, v=x / y^{2}$ to find the area of the region in the first quadrant that is bounded by the curves $y=x^{2}, y=3 x^{2}, x=y^{2}$ and $x=4 y^{2}$.

2. 16.1, Vector Fields

(a) Match the vector fields \mathbf{F} with the plots labeled A-D. Briefly explain your reasoning.
i. $\mathbf{F}(x, y, z)=x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}$
ii. $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}$
iii. $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
iv. $\mathbf{F}(x, y, z)=-x \mathbf{i}-z \mathbf{k}$

A

C

B

D

