Math 2415

Paper Homework #13

1. 16.2, Line Integrals:

- (a) Evaluate $\int_C f \, ds$ where *C* has parametrization **r** with $\mathbf{r}(t) = (t, t^2, 1)$ for $0 \le t \le 2$ and f(x, y, z) = x.
- (b) Evaluate $\int_C yz \, dy + xy \, dz$ where C is the curve given by $x = \sqrt{t}$, y = t, $z = t^2$ for $1 \le t \le 2$.
- 2. 16.3, Conservative Vectors and FTC for Line Integrals: Consider the vector field

$$\mathbf{F}(x, y) = (1 - y e^{-x})\mathbf{i} + e^{-x}\mathbf{j}.$$

- (a) Show that **F** is a conservative vector field.
- (b) Find a function f so that $\mathbf{F} = \nabla f$.
- (c) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve $\mathbf{r}(t) = e^t \mathbf{i} + \sin t \mathbf{j}$, for $0 \le t \le \pi/2$.
- 3. **16.4, Green's Theorem:** Use Green's Theorem to calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (6y + x)\mathbf{i} + (y + 2x)\mathbf{j}$ and *C* is the circle $(x 2)^2 + (y 3)^2 = 4$ traversed clockwise.