Math 2415

Paper Homework #7

Chain Rule for Functions on Curves

Let z = f(x, y) be a function on the plane and let $(x, y) = \mathbf{r}(t)$ be a curve in the plane. The composition

$$z = g(t) = f(\mathbf{r}(t)) = f(x(t), y(t))$$

is a scalar-valued function of one variable. The function g is called the **restriction** of f to the curve **r**, since it just gives us the values of f along the curve **r**. In this context, the Chain Rule for Functions on Curves states that

$$g'(t) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t).$$

- 1. **14.5, Chain Rule:** Let $z = f(x, y) = y^3 \sin x$ where $(x, y) = \mathbf{r}(t) = (\cos t, t^2)$.
 - (a) Form the composition g(t) = f(x(t), y(t)) and then use the single variable chain rule to calculate g'(t).
 - (b) Use the Chain Rule for Functions on Curves to calculate g'(t).
- 2. **14.5, Chain Rule:** Suppose that $z = f(x, y) = \sin(2x + 3y)$ where x = x(t) and y = y(t). If $x(0) = \pi/4$, $y(0) = \pi/3$, x'(0) = 1, and y'(0) = -2, find $\frac{dz}{dt}$ at t = 0.
- 3. 14.5, Chain Rule: Let z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$.
 - (a) Show that

$$\frac{\partial z}{\partial r} = f_x \cos \theta + f_y \sin \theta \tag{1}$$

and

$$\frac{1}{r}\frac{\partial z}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$
⁽²⁾

- (b) You can think of (1) and (2) as a system of two linear equations for unknowns f_x and f_y . Solve this system to find formulae for f_x and f_y in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$. **Hint:** Multiply (1) by sin θ and (2) by cos θ and follow your nose.
- (c) Show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

4. 16.6, Parametrized Surfaces:

(a) Identify the surface with parametrization

$$x = 3\cos\theta\sin\phi$$
 $y = 4\sin\theta\sin\phi$ $z = 5\cos\phi$

where $0 \le \theta \le 2\pi$ and $0 \le \phi \le \pi$. **Hint:** Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and ϕ from the equations above.

(b) Calculate a parametrization for the tangent plane to the surface at $(\theta, \phi) = (\pi/3, \pi/4)$.

5. **16.6, Parametrized Surfaces:** In each of the following surface parametrizations, filling in the missing two entries. The highlighted curves are "grid curves" for the parametrization. Justify your work.

- 6. **16.6, Parametrized Surfaces:**Find a parametrization for each of the following surfaces. [Note: There are many correct answers!] Show how you arrived at your answer. **Hint:** It is often helpful to construct your parametrization using (i) cylindrical coordinates, (ii) spherical coordinates, or (iii) by using a parametrization such as (x, y, z) = (u, v, f(u, v)) for the surface z = f(x, y). **Make sure you specify the range of values of the parameters.**
 - (a) The portion of the sphere $x^2 + y^2 + z^2 = 3$ that is between the planes $z = -\sqrt{3}/2$ and $z = \sqrt{3}/2$.
 - (b) The portion of the plane x + y + z = 1 inside the cylinder $x^2 + y^2 = 9$. Hint: Use (r, θ) as your parameters.