Math 2415

Paper Homework \#7

Chain Rule for Functions on Curves

Let $z=f(x, y)$ be a function on the plane and let $(x, y)=\mathbf{r}(t)$ be a curve in the plane. The composition

$$
z=g(t)=f(\mathbf{r}(t))=f(x(t), y(t))
$$

is a scalar-valued function of one variable. The function g is called the restriction of f to the curve \mathbf{r}, since it just gives us the values of f along the curve \mathbf{r}. In this context, the Chain Rule for Functions on Curves states that

$$
g^{\prime}(t)=\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t)
$$

1. 14.5, Chain Rule: Let $z=f(x, y)=y^{3} \sin x$ where $(x, y)=\mathbf{r}(t)=\left(\cos t, t^{2}\right)$.
(a) Form the composition $g(t)=f(x(t), y(t))$ and then use the single variable chain rule to calculate $g^{\prime}(t)$.
(b) Use the Chain Rule for Functions on Curves to calculate $g^{\prime}(t)$.
2. 14.5, Chain Rule: Suppose that $z=f(x, y)=\sin (2 x+3 y)$ where $x=x(t)$ and $y=y(t)$. If $x(0)=\pi / 4, y(0)=\pi / 3, x^{\prime}(0)=1$, and $y^{\prime}(0)=-2$, find $\frac{d z}{d t}$ at $t=0$.
3. 14.5, Chain Rule: Let $z=f(x, y)$ where $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Show that

$$
\begin{equation*}
\frac{\partial z}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r} \frac{\partial z}{\partial \theta}=-f_{x} \sin \theta+f_{y} \cos \theta \tag{2}
\end{equation*}
$$

(b) You can think of (1) and (2) as a system of two linear equations for unknowns f_{x} and f_{y}. Solve this system to find formulae for f_{x} and f_{y} in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$. Hint: Multiply (1) by $\sin \theta$ and (2) by $\cos \theta$ and follow your nose.
(c) Show that $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$.

4. 16.6, Parametrized Surfaces:

(a) Identify the surface with parametrization

$$
x=3 \cos \theta \sin \phi \quad y=4 \sin \theta \sin \phi \quad z=5 \cos \phi
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$. Hint: Find an equation of the form $F(x, y, z)=0$ for this surface by eliminating θ and ϕ from the equations above.
(b) Calculate a parametrization for the tangent plane to the surface at $(\theta, \phi)=(\pi / 3, \pi / 4)$.
5. 16.6, Parametrized Surfaces: In each of the following surface parametrizations, filling in the missing two entries. The highlighted curves are "grid curves" for the parametrization. Justify your work.

a)		The surface $x^{2}+y^{2}=z^{2}$ is parametrized by $\vec{r}(\theta, z)=\langle\ldots \ldots \ldots \ldots \ldots, \ldots \ldots \ldots \ldots \ldots, z\rangle$
b)		The surface $x^{2}+y^{2}=1$ is parametrized by $\vec{r}(\theta, z)=\langle\ldots \ldots \ldots \ldots, \ldots \ldots \ldots \ldots, z\rangle$
c)		The surface $2(x-1)^{2}+(y-5)^{2}+4 z^{2}=1$ is parametrized by $\vec{r}(\theta, \phi)=\langle\ldots \ldots \ldots \ldots, \ldots \ldots \ldots \ldots, \cos (\phi) / 2\rangle$

6. 16.6, Parametrized Surfaces:Find a parametrization for each of the following surfaces. [Note: There are many correct answers!] Show how you arrived at your answer. Hint: It is often helpful to construct your parametrization using (i) cylindrical coordinates, (ii) spherical coordinates, or (iii) by using a parametrization such as $(x, y, z)=(u, v, f(u, v))$ for the surface $z=f(x, y)$. Make sure you specify the range of values of the parameters.
(a) The portion of the sphere $x^{2}+y^{2}+z^{2}=3$ that is between the planes $z=-\sqrt{3} / 2$ and $z=\sqrt{3} / 2$.
(b) The portion of the plane $x+y+z=1$ inside the cylinder $x^{2}+y^{2}=9$. Hint: Use (r, θ) as your parameters.
