MATH 2415 Calculus of Several Variables $_{\scriptscriptstyle{\mathrm{Fall-2019}}}$

PLTLWeek# 13(Sec 16.1, 16.2)

1. Sketch the following vector fields (at least 10 vectors)

(a)
$$\mathbf{F}(x,y) = \langle x, y \rangle$$
.

(b)
$$\mathbf{F}(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$$

(c)
$$\mathbf{F}(x,y) = \langle x, y - x \rangle$$
.

(d)
$$\mathbf{F}(x,y) = \langle e^{-x}, 0 \rangle$$
.

2. Match the vector fields and the graphs

(a)
$$\mathbf{F}(x,y) = \langle x, -y \rangle$$

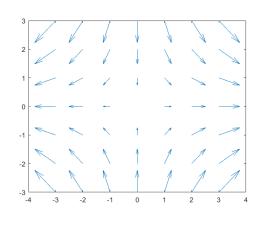
(b)
$$\mathbf{F}(x,y) = \langle y, x - y \rangle$$

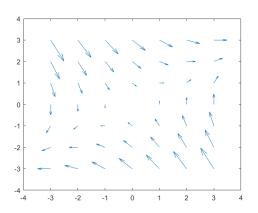
(c)
$$\mathbf{F}(x,y) = \langle y, y+2 \rangle$$

(d)
$$\mathbf{F}(x,y) = \langle \cos(x+y), x \rangle$$

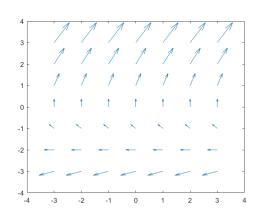
(II)

(IV)





(I)



5
4
3
2
1
0
-1
-2
-3
-4
-5
-4
-3
-2
-1
0
1
2
3
4
-5
-4
-3
-2
-1
0
1
2
3
4

(III)

3. Find the gradient vector fields for the following potential functions ϕ

(a)
$$\phi(x,y) = x^2y - xy^2$$

(b)
$$\phi(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$$

(c)
$$\phi(x, y, z) = \ln(1 + x^2 + y^2 + z^2)$$

(d)
$$\phi(x,y,z) = \frac{GMm}{\sqrt{x^2+y^2+z^2}}$$
; G,M,m are constants.

- 4. Evaluate the following line integrals
 - (a) $\int_C (x^2 + y^2) ds$; where C is the circle of radius 5 and center at origin.

(b)
$$\int_C (x^2 + y^2) ds$$
; where C is the line segment from $(1,1)$ to $(5,5)$.

- (c) $\int_C xy \, ds$; where C is the portion of the ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$ in the first quadrant.
- (d) $\int_C (2x-3y) ds$; where C is the line segment from (-1,0) to (0,1) followed by the line segment from (0,1) to (1,0).
- (e) $\int_C (x-y+2z) ds$; where C is the circle $\mathbf{r}(t) = \langle 1, 3\cos t, 3\sin t \rangle$; $0 \le t \le 2\pi$.
- 5. Find the average value of the function $f(x,y) = x^2 + y^2$ on the circle of radius 5 and center at origin.
- 6. Evaluate the line integrals $\int_C \mathbf{F} \cdot d\mathbf{r}$ of the vector fields over the parametric curve C.

(a)
$$\mathbf{F} = \langle x, y \rangle$$
 where C is the parabola $\mathbf{r}(t) = \langle 4t, t^2 \rangle$; $0 \le t \le 1$

- (b) $\mathbf{F} = \langle -y, x \rangle$ where C is the semicircle $\mathbf{r}(t) = \langle 4\cos t, 4\sin t \rangle$ above x-axis (i) clockwise direction; (ii) counterclockwise direction.
- 7. Find the work done by the force field $\mathbf{F} = \langle x, y \rangle$ on moving an object on the path consisting of the line segment from (1,2) to (0,0) followed by the line segment from (0,0) to (0,4).
- 8. Find the work done by the force field $\mathbf{F} = \frac{\langle x, y, z \rangle}{x^2 + y^2 + z^2}$ on moving an object on the line segment from (1, 1, 1) to (8, 4, 2).