Math 2415
 Problem Section \#1

Do problems marked [V] as you watch the PS Video in Week 1 of MATH 2415.701.
Do problems marked [P] in your problem session.
Make sure you do some problems from each section.

12.1: 3D Coordinate Systems

1. [V] Draw a rectangular box with the origin and the point $(1,2,3)$ as opposite vertices and faces parallel to the coordinate planes. Label each vertex with its coordinates. Find the length of the diagonal of the box.
2. [V]
(a) What does the equation $x=2$ represent in \mathbb{R}^{2} ? Sketch!
(b) What does the equation $x=2$ represent in \mathbb{R}^{3} ? Sketch!
(c) What does the equation $z=1$ represent in \mathbb{R}^{3} ? Sketch!
(d) Describe the set of all points, (x, y, z), in \mathbb{R}^{3} for which $x=2$ and $z=1$. Sketch!
3. [V] For what values of b and c do the points $(1,2,3),(4,5,1)$, and ($10, b, c$) all lie on the same line?
4. [P]
(a) Find the equation of the sphere with center $(1,3,5)$ and radius 4.
(b) What is the intersection of this sphere with the $x z$-plane? Argue algebraically and geometrically.
(c) What would the radius of the sphere have to be for the the intersection of the sphere and the $x z$-plane to be a single point. What are the coordinates of this point?

12.2: Vectors

1. [V] Do not use coordinate representations of vectors to solve this problem. Just draw pictures.
(a) Draw two vectors that are not parallel and label them \mathbf{a} and \mathbf{b}.
(b) Sketch the vector $\mathbf{a}+\mathbf{b}$
(c) Sketch the vector $\mathbf{a}-\frac{1}{2} \mathbf{b}$
(d) Sketch the vector $\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
2. [P] Sketch a parallelogram and label the vertices A, B, C, and D going around counterclockwise from the bottom left vertex. Let E be the point obtained by intersecting the two diagonals of the parallelogram. Make sure the side lengths of your parallelogram are not all equal, ie you did not draw a rhombus.
(a) Name all pairs of equal vectors in your sketch.
(b) Write each combination of vectors as a single vector: $\overrightarrow{A B}+\overrightarrow{B C}, \overrightarrow{A E}-\overrightarrow{E B}, 2 \overrightarrow{A B}+\overrightarrow{B D}$.
3. [V] Let $\mathbf{a}=3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Find
(a) $\mathbf{a}+2 \mathbf{b}$
(b) $|\mathbf{b}|$
(c) $|\mathbf{a}-\mathbf{b}|$.
4. [P] Suppose that $\mathbf{v} \in \mathbb{R}^{2}$ lies in the 2nd quadrant, makes an angle of 120° with the positive x-axis, and has length $|\mathbf{v}|=2$. Find the coordinates of \mathbf{v}.

12.3: The Dot Product

1. [V] Find $\mathbf{a} \cdot \mathbf{b}$ if
(a) $\mathbf{a}=(1,2)$ and $\mathbf{b}=(-2,3)$,
(b) $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$,
(c) $|\mathbf{a}|=3,|\mathbf{b}|=4$, and the angle between \mathbf{a} and \mathbf{b} is 120°.
2. $[\mathrm{P}]$
(a) Let $\mathbf{u}=(3,-2,1)$ and $\mathbf{v}=(2,4,-1)$.
(b) Find the scalar and vector projections of \mathbf{u} onto \mathbf{v}.
(c) Find the angle between \mathbf{u} and \mathbf{v} to the nearest degree (use a calculator!)
(d) Find three nonzero vectors that are orthogonal to \mathbf{u}.
3. [P] Answer this problem using the picture below. You are not allowed to calculate the components of the vectors \mathbf{u} and \mathbf{v}. Warning: Look carefully at the directions of the arrows on the vectors. Relate to theory from lectures!
(a) Find $\mathbf{u} \cdot \mathbf{v}$
(b) Use triangle geometry to find the scalar projection of \mathbf{v} onto \mathbf{u}.
(c) Use triangle geometry to find the vector projection of \mathbf{u} onto \mathbf{v}. (Write your answer in terms of \mathbf{v}.)

Extra Challenge Questions:

1. 12.3 .56
2. 12.3 .63
3. 12.3.47. In addition: The question asks you to find one vector \mathbf{b} with the property that $\operatorname{comp}_{\mathrm{a}}(\mathbf{b})=2$. However, there are lots of correct answers, \mathbf{b}. At this stage we don't know enough to easily find a formula for all solutions, but we can draw a picture of them. So: Draw a schematic diagram showing all possible vectors, \mathbf{b} for which $\operatorname{comp}_{\mathrm{a}}(\mathbf{b})=2$. Describe this set of vectors using an English sentence.
