Math 2415

Problem Section \#11

Do at least some problems from each section.
Recommended:15.2.4, 15.2,5, 15.3.2,15.3.4, 15.6 (all), 15.7 and 15.8 (all)
You will have the opportunity to do the remaining problems next week.

15.2: Double Integrals (Rectangular Coordinates)

1. Sketch a region that is Type I but not Type II.
2. Set up iterated integrals for both orders of integration for the integral $\iint_{D} y d A$, where D is bounded by $x=0, y=x$ and $y=3-x$. In which order is easier to do the iterated integrals? Explain. Evaluate the integral this way.
3. Evaluate $\iint_{D} x^{2} d A$ where D is the triangular region with vertices $(0,2),(1,3)$, and $(4,0)$.
4. Evaluate the integral, $\int_{x=0}^{x=1} \int_{y=x^{2}}^{y=1} \sqrt{y} \sin (y) d y d x$ by reversing the order of integration.
5. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $x+2 y+$ $3 z=6$.
6. Find the volume of the solid region under the plane $z=4$, above the plane $z=x$, and between the parabolic cylinders $y=x^{2}$ and $y=1-x^{2}$.
7. Review: Fall 2016 Exam II, Questions 1,2,3.

15.3, Double Integrals in Polar Coordinates

1. Evaluate $\iint_{D} e^{x^{2}+y^{2}} d A$, where D is the region in the 1 st quadrant between the circles $x^{2}+$ $y^{2}=1$ and $x^{2}+y^{2}=4$.
2. Evaluate $\iint_{D} \cos \left(x^{2}+y^{2}\right) d A$, where D is the region bounded by the semicircle $x=\sqrt{9-y^{2}}$ and the y-axis.
3. Calculate the volume of the solid under $z=x^{2}+y^{2}$ and above $x^{2}+y^{2} \leq 16$.
4. Calculate the volume of the solid below the plane $x+2 y+3 z=6$ and above $x^{2}+y^{2} \leq 1$.
5. Evaluate the integral by converting to polar coordinates: $\int_{0}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}}}(x+2 y) d y d x$.

15.6, Triple Integrals in Rectangular Coordinates

1. Sketch the region bounded by the following surfaces. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then use a triple integral to calculate the volume of the solid.
(a) $z=x^{2}+y^{2}, x=0, y=0, z=0, x+y=1$.
(b) $x=z^{2}, x=8-z^{2}, y=1, y=3$.
(c) $y=z^{2}, y=z, x+y+z=2, x=0$
2. Evaluate $\iiint_{E} y d V$, where E is the solid bounded by the surfaces $z=2-x^{2}, z=x^{2}-2$, $y=0$ and $y=1$.
3. Find the volume of the solid enclosed by the cylinder $z=x^{2}$ and the planes $y=0$ and $y+z=2$.

15.7 and 15.8, Triple Integrals in Cylindrical and Spherical Coordinates

1. Use cylindrical coordinates to find the volume of the solid that lies both within the cylinder $x^{2}+y^{2}=3$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
2. Let E be the solid region in the first octant (i.e., where $x \geq 0, y \geq 0, z \geq 0$) that is inside the cylinder $x^{2}+y^{2}=1$ and below the plane $x+z=1$. Sketch the solid E and calculate $\iiint_{E} y d V$.
3. Let E be the solid region $x^{2}+y^{2}+z^{2} \leq 16$. Calculate $\iiint_{E} z^{4} d V$.
4. Use spherical coordinates to calculate the triple integral $\iiint_{E} z d V$, where E is the solid region inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
