Math 2415

Problem Section #11

Do at least some problems from each section. Recommended:15.2.4, 15.2,5, 15.3.2,15.3.4, 15.6 (all), 15.7 and 15.8 (all) You will have the opportunity to do the remaining problems next week.

15.2: Double Integrals (Rectangular Coordinates)

- 1. Sketch a region that is Type I but not Type II.
- 2. Set up iterated integrals for both orders of integration for the integral $\iint_D y \, dA$, where *D* is bounded by x = 0, y = x and y = 3 x. In which order is easier to do the iterated integrals? Explain. Evaluate the integral this way.
- 3. Evaluate $\iint_D x^2 dA$ where D is the triangular region with vertices (0, 2), (1, 3), and (4, 0).
- 4. Evaluate the integral, $\int_{x=0}^{x=1} \int_{y=x^2}^{y=1} \sqrt{y} \sin(y) \, dy \, dx$ by reversing the order of integration.
- 5. Find the volume of the tetrahedron bounded by the coordinate planes and the plane x + 2y + 3z = 6.
- 6. Find the volume of the solid region under the plane z = 4, above the plane z = x, and between the parabolic cylinders $y = x^2$ and $y = 1 x^2$.
- 7. Review: Fall 2016 Exam II, Questions 1,2,3.

15.3, Double Integrals in Polar Coordinates

- 1. Evaluate $\iint_D e^{x^2+y^2} dA$, where *D* is the region in the 1st quadrant between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 2. Evaluate $\iint_D \cos(x^2 + y^2) dA$, where *D* is the region bounded by the semicircle $x = \sqrt{9 y^2}$ and the *y*-axis.
- 3. Calculate the volume of the solid under $z = x^2 + y^2$ and above $x^2 + y^2 \le 16$.
- 4. Calculate the volume of the solid below the plane x + 2y + 3z = 6 and above $x^2 + y^2 \le 1$.
- 5. Evaluate the integral by converting to polar coordinates: $\int_0^R \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} (x+2y) \, dy \, dx$.

15.6, Triple Integrals in Rectangular Coordinates

- 1. Sketch the region bounded by the following surfaces. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then use a triple integral to calculate the volume of the solid.
 - (a) $z = x^2 + y^2$, x = 0, y = 0, z = 0, x + y = 1.
 - (b) $x = z^2$, $x = 8 z^2$, y = 1, y = 3.
 - (c) $y = z^2$, y = z, x + y + z = 2, x = 0

- 2. Evaluate $\iiint_E y \, dV$, where *E* is the solid bounded by the surfaces $z = 2 x^2$, $z = x^2 2$, y = 0 and y = 1.
- 3. Find the volume of the solid enclosed by the cylinder $z = x^2$ and the planes y = 0 and y + z = 2.

15.7 and 15.8, Triple Integrals in Cylindrical and Spherical Coordinates

- 1. Use cylindrical coordinates to find the volume of the solid that lies both within the cylinder $x^2 + y^2 = 3$ and the sphere $x^2 + y^2 + z^2 = 4$.
- 2. Let *E* be the solid region in the first octant (*i.e.*, where $x \ge 0$, $y \ge 0$, $z \ge 0$) that is inside the cylinder $x^2 + y^2 = 1$ and below the plane x + z = 1. Sketch the solid *E* and calculate $\iint_{E} y \, dV$.
- 3. Let *E* be the solid region $x^2 + y^2 + z^2 \le 16$. Calculate $\iiint_E z^4 dV$.
- 4. Use spherical coordinates to calculate the triple integral $\iiint_E z \, dV$, where *E* is the solid region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the cone $z = \sqrt{x^2 + y^2}$.