Math 2415

Problem Section \#12

Do the problems from 15.9 and 16.1 below.
If you have extra time, finish off the problems from last week.

15.9: Change of Variables Theorem

1. Evaluate $\iint_{R}(x-y)^{2} \mathrm{e}^{x+y} d x d y$ where R is the parallelogram bounded by $x+y=1, x+y=3$, $x-y=-2$ and $x-y=1$. Hint: Use the Change of Variables Theorem with $u=x+y$ and $v=x-y$.
2. (Skip this one if you understand Q1.) Use the Change of Variables Theorem to evaluate the integral $\iint_{R} y d A$, where R is the quadrilateral region bounded by the lines $x+2 y=2$, $x+2 y=4, x=0$, and $y=0$. Hint: Let $u=x+2 y$ and $v=y$.
3. Use the change of variables formula and an appropriate transformation to evaluate $\iint_{R} x d A$, where R is the square with vertices $(0,0),(2,2),(4,0)$, and $(2,-2)$.
4. Calcuate $\iint_{R} y^{2} d A$, where R is the region bounded by the ellipse $4 x^{2}+25 y^{2}=1$. Hint: Use the change of variables $u=2 x, v=5 y$.
5. Let D be the region in the first quadrant of the $x y$-plane bounded by the curves $y=\frac{x}{2}, y=x$, $x y=4$ and $x y=9$. Calculate $\iint_{D} x d x d y$. Hint: Use the change of variables $x=v e^{u}$, $y=v e^{-u}$.

16.1: Vector Fields

1. Sketch the vector field $\mathbf{F}(x, y)=-x \mathbf{j}$
2. Sketch the vector field $\mathbf{F}(x, y)=x \mathbf{i}+(x-y) \mathbf{j}$
3. Let $f(x, y)=y-x^{2}$. Calculate the gradient vector field $F=\nabla f$ and sketch it.
