Math 2415

Problem Section #12

Do the problems from 15.9 and 16.1 below. If you have extra time, finish off the problems from last week.

15.9: Change of Variables Theorem

- 1. Evaluate $\iint_R (x-y)^2 e^{x+y} dx dy$ where *R* is the parallelogram bounded by x+y = 1, x+y = 3, x y = -2 and x y = 1. Hint: Use the Change of Variables Theorem with u = x + y and v = x y.
- 2. (*Skip this one if you understand Q1.*) Use the Change of Variables Theorem to evaluate the integral $\iint_R y \, dA$, where *R* is the quadrilateral region bounded by the lines x + 2y = 2, x + 2y = 4, x = 0, and y = 0. **Hint:** Let u = x + 2y and v = y.
- 3. Use the change of variables formula and an appropriate transformation to evaluate $\iint_R \times dA$, where *R* is the square with vertices (0, 0), (2, 2), (4, 0), and (2, -2).
- 4. Calcuate $\iint_R y^2 dA$, where *R* is the region bounded by the ellipse $4x^2 + 25y^2 = 1$. Hint: Use the change of variables u = 2x, v = 5y.
- 5. Let *D* be the region in the first quadrant of the *xy*-plane bounded by the curves $y = \frac{x}{2}$, y = x, xy = 4 and xy = 9. Calculate $\iint_D x \, dx \, dy$. **Hint:** Use the change of variables $x = ve^u$, $y = ve^{-u}$.

16.1: Vector Fields

- 1. Sketch the vector field $\mathbf{F}(x, y) = -x\mathbf{j}$
- 2. Sketch the vector field $\mathbf{F}(x, y) = x\mathbf{i} + (x y)\mathbf{j}$
- 3. Let $f(x, y) = y x^2$. Calculate the gradient vector field $F = \nabla f$ and sketch it.