Math 2415

Problem Section #7

Make sure you do some problems from each section.

16.6, Parametrized Surfaces

1. [Parts of Paper Hwk 16.6]: Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + u \mathbf{k}$$
 $u \ge 0, \quad 0 \le v \le 2\pi.$

- (a) Show that *S* is a cone. **Hint:** Find an equation of the form F(x, y, z) = 0 for this surface by eliminating *u* and *v* from the equations for *x*, *y*, and *z* above.
- (b) Find a parametrization of the tangent plane to the cone at the point where $(u, v) = (2, \pi/4)$.
- 2. (a) Write down the equation of the form F(x, y, z) = 0 for the sphere of radius 2, center (1, 2, 3).
 - (b) Show that

 $(x, y, z) = \mathbf{r}(\theta, \phi) = (1 + 2\sin\phi\cos\theta, 2 + 2\sin\phi\sin\theta, 3 + 2\cos\phi)$

is a parametrization of this sphere. **Hint:** Substitute the formulae for *x*, *y*, and *z* in terms of θ and ϕ into the function *F* you obtained in (a) and simplify as much as you can. What does this calculation tell you about where each of the points (*x*, *y*, *z*) = $\mathbf{r}(\theta, \phi)$ lie?

14.3-14.5: Partial Derivatives, Tangent Planes, and Chain Rule

- 1. Let $f(x, y) = xy + x^2 = x(y + x)$ Calculate f_x , f_y , f_{xy} and f_{xx} at the point $\mathbf{x}_0 = (1, 1)$. Discuss the geometric meaning of each of these derivatives, with the aid of schematic diagrams showing slices of f in planes where x or y are constant.
- 2. Show that the function $u(x, y) = e^{-x} \cos(y)$ satisfies Laplace's equation $u_{xx} + u_{yy} = 0$.
- 3. Show that the function $u(x, t) = \cos(kx) \sin(akt)$ satisfies the wave equation $u_{tt} = a^2 u_{xx}$.
- 4. Find a level set equation of the tangent plane to the function $z = f(x, y) = e^x \cos(xy)$ at $(x_0, y_0) = (0, 0)$. Explain why your solution shows that $e^x \cos(xy) \approx x + 1$ near (0, 0).
- 5. 14.5.7
- 6. 14.5.15
- 7. 14.5.35

14.6: Gradients and Directional Derivatives

- 1. Let $f(x, y) = e^y \cos(x)$ and let $\mathbf{x}_0 = (\pi/3, 0)$.
 - (a) Find the gradient of f.
 - (b) Evaluate the gradient of *f* at \mathbf{x}_0 , i.e., find $\nabla f(\mathbf{x}_0)$.
 - (c) Find the directional derivative of *f* at \mathbf{x}_0 in the direction $\theta = 3\pi/4$.
 - (d) Find the directional derivative of *f* at \mathbf{x}_0 in the direction of the vector $\mathbf{v} = (3, 4)$.
 - (e) Find the maximum rate of change of f at x_0 and the direction in which it occurs.
 - (f) In what direction is the minimum rate of change of f at x_0 ?
 - (g) Use the gradient of *f* to calculate the equation of the tangent line to the level curve $f(x, y) = \frac{1}{2}$.