Math 2415
 Problem Section \#7

Make sure you do some problems from each section.

16.6, Parametrized Surfaces

1. [Parts of Paper Hwk 16.6]: Let S be the surface with parametrization

$$
(x, y, z)=\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k} \quad u \geq 0, \quad 0 \leq v \leq 2 \pi .
$$

(a) Show that S is a cone. Hint: Find an equation of the form $F(x, y, z)=0$ for this surface by eliminating u and v from the equations for x, y, and z above.
(b) Find a parametrization of the tangent plane to the cone at the point where $(u, v)=$ ($2, \pi / 4$).
2. (a) Write down the equation of the form $F(x, y, z)=0$ for the sphere of radius 2 , center $(1,2,3)$.
(b) Show that

$$
(x, y, z)=\mathbf{r}(\theta, \phi)=(1+2 \sin \phi \cos \theta, 2+2 \sin \phi \sin \theta, 3+2 \cos \phi)
$$

is a parametrization of this sphere. Hint: Substitute the formulae for x, y, and z in terms of θ and ϕ into the function F you obtained in (a) and simplify as much as you can. What does this calculation tell you about where each of the points $(x, y, z)=\mathbf{r}(\theta, \phi)$ lie?

14.3-14.5: Partial Derivatives, Tangent Planes, and Chain Rule

1. Let $f(x, y)=x y+x^{2}=x(y+x)$ Calculate $f_{x}, f_{y}, f_{x y}$ and $f_{x x}$ at the point $\mathbf{x}_{0}=(1,1)$. Discuss the geometric meaning of each of these derivatives, with the aid of schematic diagrams showing slices of f in planes where x or y are constant.
2. Show that the function $u(x, y)=e^{-x} \cos (y)$ satisfies Laplace's equation $u_{x x}+u_{y y}=0$.
3. Show that the function $u(x, t)=\cos (k x) \sin (a k t)$ satisfies the wave equation $u_{t t}=a^{2} u_{x x}$.
4. Find a level set equation of the tangent plane to the function $z=f(x, y)=e^{x} \cos (x y)$ at $\left(x_{0}, y_{0}\right)=(0,0)$. Explain why your solution shows that $e^{x} \cos (x y) \approx x+1$ near $(0,0)$.
5. 14.5.7
6. 14.5 .15
7. 14.5.35

14.6: Gradients and Directional Derivatives

1. Let $f(x, y)=e^{y} \cos (x)$ and let $\mathbf{x}_{0}=(\pi / 3,0)$.
(a) Find the gradient of f.
(b) Evaluate the gradient of f at \mathbf{x}_{0}, i.e., find $\nabla f\left(\mathbf{x}_{0}\right)$.
(c) Find the directional derivative of f at \mathbf{x}_{0} in the direction $\theta=3 \pi / 4$.
(d) Find the directional derivative of f at \mathbf{x}_{0} in the direction of the vector $\mathbf{v}=(3,4)$.
(e) Find the maximum rate of change of f at x_{0} and the direction in which it occurs.
(f) In what direction is the minimum rate of change of f at x_{0} ?
(g) Use the gradient of f to calculate the equation of the tangent line to the level curve $f(x, y)=\frac{1}{2}$.
