Math 2415

Paper Homework #12

1. 15.7, Triple Integrals in Cylindrical Coordinates

- (a) Let *E* be the solid region in the first octant (*i.e.*, where $x \ge 0$, $y \ge 0$, $z \ge 0$) that is inside the cylinder $x^2 + y^2 = 1$ and below the plane x + z = 1. Calculate $\iiint_E y \, dV$. Hint: This problem was in PS #12.
- (b) Find $\iiint_E \sqrt{x^2 + y^2} \, dV$ where *E* is the solid region above the *xy*-plane, below the paraboloid $z = 8 x^2 y^2$ and *outside* the cylinder $x^2 + y^2 = 1$. Sketch the solid *E*.

2. 15.8, Triple Integrals in Spherical Coordinates

- (a) Find $\iiint z \, dV$ where *E* is the solid region that is inside the sphere $x^2 + y^2 + z^2 = 4$ and above the cone $z = \sqrt{x^2 + y^2}$. **Hint:** This problem was in PS #12.
- (b) Find the volume of the region inside the ball $x^2 + y^2 + z^2 \le R^2$ that lies between the planes y = 0 and $y = \sqrt{3}x$ in the first octant.

3. 15.9, Change of Variables Theorem:

- (a) Evaluate $\iint_R (x y)^2 e^{x+y} dx dy$ where *R* is the parallelogram bounded by x + y = 1, x + y = 3, x y = -2 and x y = 1. Hint: This problem was in PS #12.
- (b) Use the change of variables $u = y/x^2$, $v = x/y^2$ to find the area of the region in the first quadrant that is bounded by the curves $y = x^2$, $y = 3x^2$, $x = y^2$ and $x = 4y^2$.