Math 2415

Paper Homework \#12

1. 15.7, Triple Integrals in Cylindrical Coordinates

(a) Let E be the solid region in the first octant (i.e., where $x \geq 0, y \geq 0, z \geq 0$) that is inside the cylinder $x^{2}+y^{2}=1$ and below the plane $x+z=1$. Calculate $\iiint_{E} y d V$. Hint: This problem was in PS \#12.
(b) Find $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$ where E is the solid region above the $x y$-plane, below the paraboloid $z=8-x^{2}-y^{2}$ and outside the cylinder $x^{2}+y^{2}=1$. Sketch the solid E.

2. 15.8, Triple Integrals in Spherical Coordinates

(a) Find $\iiint z d V$ where E is the solid region that is inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the cone $z=\sqrt{x^{2}+y^{2}}$. Hint: This problem was in PS \#12.
(b) Find the volume of the region inside the ball $x^{2}+y^{2}+z^{2} \leq R^{2}$ that lies between the planes $y=0$ and $y=\sqrt{3} x$ in the first octant.
3. 15.9, Change of Variables Theorem:
(a) Evaluate $\iint_{R}(x-y)^{2} \mathrm{e}^{x+y} d x d y$ where R is the parallelogram bounded by $x+y=1$, $x+y=3, x-y=-2$ and $x-y=1$. Hint: This problem was in PS \#12.
(b) Use the change of variables $u=y / x^{2}, v=x / y^{2}$ to find the area of the region in the first quadrant that is bounded by the curves $y=x^{2}, y=3 x^{2}, x=y^{2}$ and $x=4 y^{2}$.

