Math 2415

Paper Homework \#13

1. Sketch the following vector fields
(a) $\mathbf{F}(x, y)=2 \mathbf{i}+y^{2} \mathbf{j}$
(b) $\mathbf{F}(x, y)=\nabla f$ where $f(x, y)=4 x^{2}+y^{2}$
2. Evaluate $\int_{C} f d s$ where C has parametrization \mathbf{r} with $\mathbf{r}(t)=\left(t^{3}, t^{2}, t\right)$ for $0 \leq t \leq 1$ and $f(x, y, z)=2 z+9 y z$.
3. Evaluate $\int_{C} y z d y+x y d z$ where C is the curve given by $x=\sqrt{t}, y=t, z=t^{2}$ for $1 \leq t \leq 2$.
4. Evaluate $\int_{C}\left[(2 x+3 y) \mathbf{i}+(3 x+2 y) \mathbf{j}+3 z^{2} \mathbf{k}\right] \cdot d \mathbf{r}$ where C is the line segment from $(2,-1,3)$ to $(4,2,-1)$.
5. Let C be the curve of intersection of the plane $x+y+2 z=1$ and the cylinder $x^{2}+y^{2}=1$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
