Math 2415

Paper Homework \#14

1. 16.3, Conservative Vectors and FTC for Line Integrals: Consider the vector field

$$
\mathbf{F}(x, y)=\left(1-y e^{-x}\right) \mathbf{i}+e^{-x} \mathbf{j} .
$$

(a) Show that \mathbf{F} is a conservative vector field.
(b) Find a function f so that $\mathbf{F}=\nabla f$.
(c) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve $\mathbf{r}(t)=e^{t} \mathbf{i}+\sin t \mathbf{j}$, for $0 \leq t \leq \pi / 2$.
2. 16.4, Green's Theorem: Use Green's Theorem to calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=(6 y+$ $x) \mathbf{i}+(y+2 x) \mathbf{j}$ and C is the circle $(x-2)^{2}+(y-3)^{2}=4$ traversed clockwise.
3. 16.5, Curl and Divergence: Compute the divergence and curl of the following vector fields
(a) $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$.
(b) $\mathbf{F}=\frac{x i+y j+z k}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$
4. In this multiple choice problem provide a justification for your answer.

Let $\vec{F}(x, y, z)$ be a vector field and let $f(x, y, z)$ be a scalar function. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, which of the following is not defined?
(a) $\nabla \times f$
(b) $\nabla \times \vec{F}+\nabla f$
(c) $\nabla \times(\vec{r} \times \nabla f)$
(d) $f+\nabla \cdot \vec{F}$
(e) More than one of the above
5. In the multiple choice problem on the next page provide a justification for your answer.

The pictures below show top views of three vector fields, all of which have no z component. Which one has the curl pointing in the positive \hat{k} direction at the origin?

(a) the one on the left
(b) the one in the middle
(c) the one on the right
(d) none of them

