Math 2415

Paper Homework \#9

1. 14.7: Global Optimization Find the absolute maximum and minimum values of $f(x, y)=$ $x+2 y-x y$ on the closed triangular domain with vertices $(0,0),(0,2)$, and $(6,0)$.
2. 14.7: Global Optimization Find the absolute maximum and minimum values of the function $f(x, y)=x y^{2}$ on the domain $D=\left\{(x, y) \mid x \geq 0, y \leq 0, x^{2}+y^{2} \leq 9\right\}$
3. 14.8, Constrained Optimization: Use the method of Lagrange Multipliers to find the absolute maximum and minimum values of the function $f(x, y)=x^{2} y$ subject to the constraint $x^{2}+y^{2}=9$. To the extent possible solve the problem using a geometric method (a picture) as well as algebraically.
4. 14.8, Constrained Optimization: Use the method of Lagrange Multipliers to minimize $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x y^{2}=54$. Explain why the solution is the point on the curve $x y^{2}=54$ that is closest to the origin.
