Math 2415

Paper Homework \#12

1. 15.7, Triple Integrals in Cylindrical Coordinates

(a) Sketch the solid region, E, in the first octant that is bounded by the cylinder $y^{2}+z^{2}=$ 16 and the plane $x+y=4$. Use a triple integral in cylindrical coordinates to find $\iiint_{E}\left(y^{2}+z^{2}\right) d V$.
(b) Find $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$ where E is the solid region above the $x y$-plane, below the paraboloid $z=8-x^{2}-y^{2}$ and outside the cylinder $x^{2}+y^{2}=4$. Sketch the solid E.
2. 15.8, Triple Integrals in Spherical Coordinates
(a) Find $\iiint z^{2} d V$ where E is the solid region that is inside the sphere $x^{2}+y^{2}+z^{2}=9$ and below the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) Find the volume of the region inside the ball $x^{2}+y^{2}+z^{2} \leq R^{2}$ that lies between the planes $y=0$ and $y=\sqrt{3} x$ in the first octant. Your answer should be in terms of the radius, R, of the ball.

3. 15.9, Change of Variables Theorem:

(a) Evaluate $\iint_{R}(x-y)^{2} \mathrm{e}^{x+y} d x d y$ where R is the parallelogram bounded by $x-y=1$, $x-y=3, x+y=-2$ and $x+y=1$.
(b) Use the change of variables $u=y / x^{2}, v=x / y^{2}$ to find the area of the region in the first quadrant that is bounded by the curves $y=x^{2}, y=4 x^{2}, x=y^{2}$ and $x=3 y^{2}$.

