Math 2415 Paper Homework #13

- 1. Sketch the following vector fields
 - (a) F(x, y) = (2y x)i + (x + y)j
 - (b) **F**(*x*, *y*) = ∇f where $f(x, y) = 4x^2 + y^2$

Hint for (a): To sketch the vector field $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$, find the region in the (x, y)-plane where P > 0 and Q > 0. In this region \mathbf{F} points roughly north-east. Repeat for the regions where (i) P > 0 and Q < 0, (ii) P < 0 and Q > 0, and (iii) P < 0 and Q < 0.

- 2. Evaluate $\int_C f \, ds$ where C has parametrization **r** with $\mathbf{r}(t) = (t^3, t^2, t)$ for $0 \le t \le 1$ and f(x, y, z) = 2z + 9yz.
- 3. Evaluate $\int_C yz \, dy + xy \, dz$ where C is the curve given by $x = \sqrt{t}$, y = t, $z = t^2$ for $1 \le t \le 2$.
- 4. Evaluate $\int_C [(2x + 3y)\mathbf{i} + (3x + 2y)\mathbf{j} + 3y^2\mathbf{k}] \cdot d\mathbf{r}$ where *C* is the line segment from (2, -1, 3) to (4, 2, -1).
- 5. Let *C* be the curve of intersection of the plane 2x + y + z = 1 and the cylinder $x^2 + y^2 = 1$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$.