Math 2415
 Problem Section \#1

Make sure you do some problems from each section.

12.1: 3D Coordinate Systems

1. Draw a rectangular box with the origin and the point $(1,2,3)$ as opposite vertices and faces parallel to the coordinate planes. Label each vertex with its coordinates. Find the length of the diagonal of the box.
2. (a) What does the equation $x=2$ represent in \mathbb{R}^{2} ? Sketch!
(b) What does the equation $x=2$ represent in \mathbb{R}^{3} ? Sketch!
(c) What does the equation $z=1$ represent in \mathbb{R}^{3} ? Sketch!
(d) Describe the set of all points, (x, y, z), in \mathbb{R}^{3} for which $x=2$ and $z=1$. Sketch!
3. For what values of b and c do the points (1,2,3), (4,5, $)$, and ($10, b, c$) all lie on the same line?
4. (a) Find the equation of the sphere with center $(1,3,5)$ and radius 4.
(b) What is the intersection of this sphere with the $x z$-plane? Argue algebraically and geometrically.
(c) What would the radius of the sphere have to be for the the intersection of the sphere and the $x z$-plane to be a single point. What are the coordinates of this point?

12.2: Vectors

1. Do not use coordinate representations of vectors to solve this problem. Just draw pictures.
(a) Draw two vectors that are not parallel and label them \mathbf{a} and \mathbf{b}.
(b) Sketch the vector $\mathbf{a}+\mathbf{b}$
(c) Sketch the vector $\mathbf{a}-\frac{1}{2} \mathbf{b}$
(d) Sketch the vector $\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
2. Sketch a parallelogram and label the vertices A, B, C, and D going around counter-clockwise from the bottom left vertex. Let E be the point obtained by intersecting the two diagonals of the parallelogram. Make sure the side lengths of your parallelogram are not all equal, ie you did not draw a rhombus. The notation $\overrightarrow{A B}$ refers to the displacement vector from the point A to the point B.
(a) Name all pairs of equal vectors in your sketch.
(b) Write each combination of vectors as a single vector: $\overrightarrow{A B}+\overrightarrow{B C}, \overrightarrow{A E}-\overrightarrow{E B}, 2 \overrightarrow{A B}+\overrightarrow{B D}$.
3. Let $\mathbf{a}=3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. Find
(a) $\mathbf{a}+2 \mathbf{b}$
(b) $|\mathbf{b}|$
(c) $|\mathbf{a}-\mathbf{b}|$.
4. Suppose that $\mathbf{v} \in \mathbb{R}^{2}$ lies in the 2nd quadrant, makes an angle of 120° with the positive x-axis, and has length $|\mathbf{v}|=2$. Find the coordinates of \mathbf{v}.

12.3: The Dot Product

1. Find $\mathbf{a} \cdot \mathbf{b}$ if
(a) $\mathbf{a}=(1,2)$ and $\mathbf{b}=(-2,3)$,
(b) $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$,
(c) $|\mathbf{a}|=3,|\mathbf{b}|=4$, and the angle between \mathbf{a} and \mathbf{b} is 120°.
2. (a) Let $\mathbf{u}=(3,-2,1)$ and $\mathbf{v}=(2,4,-1)$.
(b) Find the scalar and vector projections of \mathbf{u} onto \mathbf{v}.
(c) Find the angle between \mathbf{u} and \mathbf{v} to the nearest degree (use a calculator!)
(d) Find three nonzero vectors that are orthogonal to \mathbf{u}.
3. Answer this problem using the picture below. You are not allowed to calculate the components of the vectors \mathbf{u} and \mathbf{v}. Warning: Look carefully at the directions of the arrows on the vectors. Relate to theory from lectures!
(a) Find $\mathbf{u} \cdot \mathbf{v}$
(b) Use triangle geometry to find the scalar projection of \mathbf{v} onto \mathbf{u}.
(c) Use triangle geometry to find the vector projection of \mathbf{u} onto \mathbf{v}. (Write your answer in terms of \mathbf{v}.)

4. Let C be the point on the line segment $A B$ that is twice as far from A and it is from B, and let O denote the origin. Let $\mathbf{a}=\overrightarrow{O A}, \mathbf{b}=\overrightarrow{O B}$, and $\mathbf{c}=\overrightarrow{O C}$. [Recall that $\overrightarrow{A B}$ refers to the displacement vector from the point A to the point B.]
(a) Make a sketch showing the relationships between all these points and vectors. Your sketch will help you solve the other parts of the problem.
(b) Express $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
(c) Hence express $\overrightarrow{A C}$ in terms of \mathbf{a} and \mathbf{b}.
(d) Hence find a formula for \mathbf{c} in terms of \mathbf{a} and \mathbf{b}.
(e) Now also suppose that $\mathbf{a} \perp \mathbf{b}$ and $|\mathbf{b}|=1$. Find the scalar projection of \mathbf{c} onto \mathbf{b}. Hint: Your answer should be a number.
(f) Calculate \mathbf{c} in the special case that $\mathbf{a}=\mathbf{i}$ and $\mathbf{b}=\mathbf{j}$. Is your answer consistent with your answer to (e)?

Extra Challenge Questions:

1. Find the angle between a diagonal of a cube and a diagonal of one of its faces.
2. We learned in class that $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)$. Use this property to prove the Cauchy-Schwarz inequality

$$
\begin{equation*}
|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}| . \tag{1}
\end{equation*}
$$

3. The triangle inequality states that

$$
\begin{equation*}
|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}| . \tag{2}
\end{equation*}
$$

(a) Give a geometric interpretation of the triangle inequality.
(b) Use the fact that $|\mathbf{a}+\mathbf{b}|^{2}=(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})$ and the distribute law for the dot product to prove (2).
4. The parallelogram law states that

$$
\begin{equation*}
|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a}-\mathbf{b}|^{2}=2|\mathbf{a}|^{2}+2|\mathbf{b}|^{2} . \tag{3}
\end{equation*}
$$

(a) Give a geometric interpretation of the parallelogram law.
(b) Prove the parallelogram law.
5. Let $\mathbf{a}=2 \mathbf{i}+4 \mathbf{k}$.
(a) Find one vector \mathbf{b} so that $\operatorname{Comp}_{\mathrm{a}}(\mathbf{b})=2$.
(b) Draw a picture to convince yourself that there are an infinite number of vectors, \mathbf{b} for which $\mathrm{Comp}_{\mathrm{a}}(\mathbf{b})=2$. Describe this set of vectors using an English sentence.

