Math 2415

Problem Section \#10

15.1 Double Integrals over Rectangles

1. Evaluate the double integral, $\iint_{R}(2 y+3) d A$, where $R=[0,3] \times[0,2]$ by identifying it as the volume of a solid. (No need to compute an integral!)
2. Calculate $\iint_{R} y e^{x y} d A$ where $R=[0,1] \times[0,2]$.
3. (a) Explain why the paraboloid $z=2+x^{2}+y^{2}$ always lies under the plane $z=8$ when (x, y) is in the rectangle $[0,1] \times[0,2]$.
(b) Sketch the solid enclosed by the paraboloid $z=2+x^{2}+y^{2}$ and the planes $x=0, x=1$, $y=0, y=2$, and $z=8$. Hint: Do this by sketching the curves obtained by intersecting $z=2+x^{2}+y^{2}$ in the four planes $x=0, x=1, y=0$, and $y=2$.
(c) Set up a double integral to calculate the volume of this solid and evaluate the integral.

15.2: Double Integrals (Rectangular Coordinates)

1. Sketch a region that is Type I but not Type II.
2. Set up iterated integrals for both orders of integration for the integral $\iint_{D} y d A$, where D is bounded by $x=0, y=x$ and $y=3-x$. In which order is easier to do the iterated integrals? Explain. Evaluate the integral this way.
3. Evaluate $\iint_{D} x^{2} d A$ where D is the triangular region with vertices $(0,2),(1,3)$, and $(4,0)$.
4. Evaluate the integral, $\int_{x=0}^{x=1} \int_{y=x^{2}}^{y=1} \sqrt{y} \sin (y) d y d x$ by reversing the order of integration.
5. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $x+2 y+$ $3 z=6$.
6. (a) Explain why the plane $z=x$ always lies under the the plane $z=4$ over the region in the $x y$-plane between $y=x^{2}$ and $y=1-x^{2}$.
(b) Find the volume of the solid region under the plane $z=4$, above the plane $z=x$, and between the parabolic cylinders $y=x^{2}$ and $y=1-x^{2}$.

Exam Two Review

You can start review for Exam Two today. We will do more of these next week.

1. Spring 2019: 3
2. Fall 2017: 6
3. Fall 2016 Exam II: 1,2,4,6,7
4. Fall 2014 Exam II: 1,2,3,4
5. Fall 2012 Exam II:1,2,3,4,6,8
