Math 2415

Problem Section #7

Make sure you do some problems from each section.

14.3-14.5: Partial Derivatives, Tangent Planes, and Chain Rule

Chain Rule: Let z = f(x, y) be a function on the plane and let $(x, y) = \mathbf{r}(t)$ be a curve in the plane. The composition

$$z = g(t) = f(\mathbf{r}(t)) = f(x(t), y(t))$$

is a scalar-valued function of one variable. The function g is called the **restriction** of f to the curve **r**, since it just gives us the values of f along the curve **r**. In this context, the **Chain Rule for Functions on Curves** states that

$$g'(t) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t).$$

Now for the questions!

- 1. Let $f(x, y) = xy + x^2 = x(y + x)$ Calculate f_x , f_y , f_{xy} and f_{xx} at the point $\mathbf{x}_0 = (1, 1)$. Discuss the geometric meaning of each of these derivatives, with the aid of schematic diagrams showing slices of f in planes where x or y are constant.
- 2. Show that the function $u(x, y) = e^{-x} \cos(y)$ satisfies Laplace's equation $u_{xx} + u_{yy} = 0$.
- 3. Show that the function $u(x, t) = \cos(kx)\sin(akt)$ satisfies the wave equation $u_{tt} = a^2 u_{xx}$.
- 4. Find an equation of the form z = Ax + By + C for the tangent plane to the function $z = f(x, y) = e^x \cos(xy)$ at $(x_0, y_0) = (0, 0)$. Explain why your solution shows that $e^x \cos(xy) \approx x + 1$ near (0, 0).
- 5. Let $z = f(x, y) = y^2 \sin x$ where $(x, y) = \mathbf{r}(t) = (e^{3t}, t^4)$.
 - (a) Form the composition g(t) = f(x(t), y(t)) and then use the single variable chain rule to calculate g'(t).
 - (b) Use the Chain Rule for Functions on Curves to calculate g'(t).
- 6. Use the chain rule to calculate $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where $z = \cos(x^2 + y^2)$ and $x = t \ln s$, $y = se^t$. Hint: Make a tree diagram showing the relationships between the variables.
- 7. Let g(t) = f(x(t), y(t)), where x(2) = 6, x'(2) = 8, y(2) = -1, y'(2) = 3, f(6, -1) = 10, $f_x(6, -1) = 2$, $f_y(6, -1) = 7$, f(8, 3) = -4, $f_x(8, 3) = 5$, $f_y(8, 3) = 9$. Find g'(2).
- 8. Suppose that z = f(x, y) and that $g(u, v) = f(\cos(u) + v^2, \sin(u) v^3)$. Use the table of values to calculate $g_u(0, 1)$ and $g_v(0, 1)$.

(<i>x</i> , <i>y</i>)	f	f_X	f_y
(0,1)	5	3	-7
(2, -1)	3	9	-4

9. The temperature at point (x, y) on a hot plate is T = T(x, y). An ant walks on the hot plate so that its position at time t is $x = 1 + t^2$, $y = t^3$. If $\nabla T(5, 8) = (6, -1)$ find the rate of change of the ant's temperature at time t = 2.

16.6, Parametrized Surfaces

1. Let S be the surface with parametrization

$$(x, y, z) = \mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + u \mathbf{k}$$
 $u \ge 0, \quad 0 \le v \le 2\pi.$

- (a) Show that *S* is a cone. **Hint:** Find an equation of the form F(x, y, z) = 0 for this surface by eliminating *u* and *v* from the equations for *x*, *y*, and *z* above.
- (b) Sketch the cone, together with the "grid" curves on the cone where (a) u = 2 and (b) $v = \pi/4$.
- (c) Find a parametrization of the tangent plane to the cone at the point where $(u, v) = (2, \pi/4)$. Add this tangent plane to your sketch.
- 2. (a) Write down the equation of the form F(x, y, z) = 0 for the sphere of radius 2, center (1, 2, 3).
 - (b) Show that

$$(x, y, z) = \mathbf{r}(\theta, \phi) = (1 + 2\sin\phi\cos\theta, 2 + 2\sin\phi\sin\theta, 3 + 2\cos\phi)$$

is a parametrization of this sphere. **Hint:** Substitute the formulae for *x*, *y*, and *z* in terms of θ and ϕ into the function *F* you obtained in (a) and simplify as much as you can. What does this calculation tell you about where each of the points (*x*, *y*, *z*) = $\mathbf{r}(\theta, \phi)$ lie?

- 3. Find a parametrization for each of the following surfaces. [Note: There are many correct answers!] Show how you arrived at your answer. **Hint:** It is often helpful to construct your parametrization using (a) cylindrical coordinates, (b) spherical coordinates, or (c) by using a parametrization such as (x, y, z) = (u, v, f(u, v)) for the surface z = f(x, y).
 - (a) The portion of the paraboloid $z = x^2 + y^2$ where $z \le 4$.
 - (b) The portion of the cone $z = 2\sqrt{x^2 + y^2}$ that is between the planes z = 2 and z = 4 and is in the first octant.
 - (c) The portion of the sphere $x^2 + y^2 + z^2 = 9$ that is above the cone $z = \sqrt{x^2 + y^2}$.
 - (d) The portion of the cylinder $y^2 + z^2 = 9$ between the planes x = 0 and x = 3.