Math 2415

Problem Section \#7

Make sure you do some problems from each section.

14.3-14.5: Partial Derivatives, Tangent Planes, and Chain Rule

Chain Rule: Let $z=f(x, y)$ be a function on the plane and let $(x, y)=\mathbf{r}(t)$ be a curve in the plane. The composition

$$
z=g(t)=f(\mathbf{r}(t))=f(x(t), y(t))
$$

is a scalar-valued function of one variable. The function g is called the restriction of f to the curve \mathbf{r}, since it just gives us the values of f along the curve \mathbf{r}. In this context, the Chain Rule for Functions on Curves states that

$$
g^{\prime}(t)=\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=f_{x}(x(t), y(t)) x^{\prime}(t)+f_{y}(x(t), y(t)) y^{\prime}(t)
$$

Now for the questions!

1. Let $f(x, y)=x y+x^{2}=x(y+x)$ Calculate $f_{x}, f_{y}, f_{x y}$ and $f_{x x}$ at the point $\mathbf{x}_{0}=(1,1)$. Discuss the geometric meaning of each of these derivatives, with the aid of schematic diagrams showing slices of f in planes where x or y are constant.
2. Show that the function $u(x, y)=e^{-x} \cos (y)$ satisfies Laplace's equation $u_{x x}+u_{y y}=0$.
3. Show that the function $u(x, t)=\cos (k x) \sin (a k t)$ satisfies the wave equation $u_{t t}=a^{2} u_{x x}$.
4. Find an equation of the form $z=A x+B y+C$ for the tangent plane to the function $z=$ $f(x, y)=e^{x} \cos (x y)$ at $\left(x_{0}, y_{0}\right)=(0,0)$. Explain why your solution shows that $e^{x} \cos (x y) \approx$ $x+1$ near $(0,0)$.
5. Let $z=f(x, y)=y^{2} \sin x$ where $(x, y)=\mathbf{r}(t)=\left(e^{3 t}, t^{4}\right)$.
(a) Form the composition $g(t)=f(x(t), y(t))$ and then use the single variable chain rule to calculate $g^{\prime}(t)$.
(b) Use the Chain Rule for Functions on Curves to calculate $g^{\prime}(t)$.
6. Use the chain rule to calculate $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where $z=\cos \left(x^{2}+y^{2}\right)$ and $x=t \ln s, y=s e^{t}$. Hint: Make a tree diagram showing the relationships between the variables.
7. Let $g(t)=f(x(t), y(t))$, where $x(2)=6, x^{\prime}(2)=8, y(2)=-1, y^{\prime}(2)=3, f(6,-1)=10$, $f_{x}(6,-1)=2, f_{y}(6,-1)=7, f(8,3)=-4, f_{x}(8,3)=5, f_{y}(8,3)=9$. Find $g^{\prime}(2)$.
8. Suppose that $z=f(x, y)$ and that $g(u, v)=f\left(\cos (u)+v^{2}, \sin (u)-v^{3}\right)$. Use the table of values to calculate $g_{u}(0,1)$ and $g_{v}(0,1)$.

(x, y)	f	f_{x}	f_{y}
$(0,1)$	5	3	-7
$(2,-1)$	3	9	-4

9. The temperature at point (x, y) on a hot plate is $T=T(x, y)$. An ant walks on the hot plate so that its position at time t is $x=1+t^{2}, y=t^{3}$. If $\nabla T(5,8)=(6,-1)$ find the rate of change of the ant's temperature at time $t=2$.

16.6, Parametrized Surfaces

1. Let S be the surface with parametrization

$$
(x, y, z)=\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k} \quad u \geq 0, \quad 0 \leq v \leq 2 \pi .
$$

(a) Show that S is a cone. Hint: Find an equation of the form $F(x, y, z)=0$ for this surface by eliminating u and v from the equations for x, y, and z above.
(b) Sketch the cone, together with the "grid" curves on the cone where (a) $u=2$ and (b) $v=\pi / 4$.
(c) Find a parametrization of the tangent plane to the cone at the point where $(u, v)=$ ($2, \pi / 4$). Add this tangent plane to your sketch.
2. (a) Write down the equation of the form $F(x, y, z)=0$ for the sphere of radius 2 , center $(1,2,3)$.
(b) Show that

$$
(x, y, z)=\mathbf{r}(\theta, \phi)=(1+2 \sin \phi \cos \theta, 2+2 \sin \phi \sin \theta, 3+2 \cos \phi)
$$

is a parametrization of this sphere. Hint: Substitute the formulae for x, y, and z in terms of θ and ϕ into the function F you obtained in (a) and simplify as much as you can. What does this calculation tell you about where each of the points $(x, y, z)=\mathbf{r}(\theta, \phi)$ lie?
3. Find a parametrization for each of the following surfaces. [Note: There are many correct answers!] Show how you arrived at your answer. Hint: It is often helpful to construct your parametrization using (a) cylindrical coordinates, (b) spherical coordinates, or (c) by using a parametrization such as $(x, y, z)=(u, v, f(u, v))$ for the surface $z=f(x, y)$.
(a) The portion of the paraboloid $z=x^{2}+y^{2}$ where $z \leq 4$.
(b) The portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ that is between the planes $z=2$ and $z=4$ and is in the first octant.
(c) The portion of the sphere $x^{2}+y^{2}+z^{2}=9$ that is above the cone $z=\sqrt{x^{2}+y^{2}}$.
(d) The portion of the cylinder $y^{2}+z^{2}=9$ between the planes $x=0$ and $x=3$.

