How to draw conics

March 9, 2023

These directives are only for sketching parabolas, ellipses, and hyperbolas schematically. All constants below are positive.

1 Parabolas

We shall assume that you know how to draw $y=x^{2}$ in the $x-y$ plane. Note that all the parabolas below pass through the origin.

1.1 $y=a x^{2}$

For $a>1$, you draw the parabola $y=a x^{2}$ "above" the parabola $y=x^{2}$.

When $1>a>0$, you draw the parabola $y=a x^{2}$ below $y=x^{2}$ it.

For $b>a>1$, you draw the parabola $y=b x^{2}$ above $y=a x^{2}$.

$1.2 y=-a x^{2}$

To get the graph of $y=-x^{2}$, you reflect the graph of $y=x^{2}$ in the x -axis.

The graph of $y=-a x^{2}$ for $a>1$ is below that of $y=-x^{2}$. For $0<a<1$, it is above the graph of $y=x^{2}$ (opening in the same direction as $y=-x^{2}$

1.3
 $$
x=y^{2}
$$

The graph of $x=y^{2}$ is obtained by reflecting the graph of $y=x^{2}$ in the line $y=x$. It may help to think of this as rotating the graph of $y=x^{2}$ clockwise by 90° and relabelling the axes so that y is up and x is to the right.

1.4
 $x=a y^{2}$

The graphs for $y=a x^{2}$ when $a>1$ is to the right of that of $x=y^{2}$

and for $1>a>0$ it is to the left of $x=y^{2}$, opening in the same direction as $x=y^{2}$.

$1.5 x=-a y^{2}$

To sketch the graph of $x=y^{2}$, reflect the graph of $x=y^{2}$ in the y-axis.

The graphs for $y=-a x^{2}$ when $a>1$ is to the left of that of $x=y^{2}$,

and for $1>a>0$ it is to the right of $x=y^{2}$, opening in the same direction as $x=y^{2}$.

2 Ellipses

$2.1 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
To draw $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we first find the points where the curve intersects the axes: these points are $(a, 0),(-a, 0),(0, b),(0,-b)$.

We then draw a "squished" circle passing through these four points.

$2.2 \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=k$

There is nothing to do when $k<1$. For $k=0$, we just get the point $(0,0)$.
For $k<1$, the graph of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=k$ is inside that of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

and for $k>1$, the graph of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=k$ is outside that of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

The figures above were drawn for $a>b$, when $a<b$, the same trend holds, but this time, the ellipses are fatter in the y-direction.

2.3 Remark

When drawing ellipses, your sketch does not have to be to scale but make sure that it shows which direction the ellipse is thinner/fatter clearly. You should do this even if a is ever so slightly larger/smaller than b. Also note that when $\mathrm{a}=\mathrm{b}$, we have a circle.

3 Hyperbolas

$3.1 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
To sketch $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, proceed as follows:

- Set the constant term in the equation to zero:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0
$$

to find the asymptotes of the curve: $a y=b x$ and $a y=-b x$.

- Find which axis the curve intersects. Here setting $y=0$ gives $x=a$ and $x=-a$, so the curve intersects the x-axis.
- Draw the two branches of the hyperbola passing through $(a, 0)$ and $(-a, 0)$:

$3.2 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=k$

Here, the hyperbola as the same asymptotes as $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
For $k>1$, the curve is further away from the origin than $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and for $k<1$ it is more towards the origin.

$3.3 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$
To sketch $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$:

- Set the constant term in the equation to zero:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0
$$

to find the asymptotes of the curve: $a y=b x$ and $a y=-b x$.

- Find which axis the curve intersects. Here setting $x=0$ gives $y=b$ and $y=-b$, so the curve intersects the y-axis.
- Draw the two branches of the hyperbola passing through $(0, b)$ and $(0,-b)$:

$3.4 \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-k$

Here, the hyperbola as the same asymptotes as $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$.
For $k>1$, the curve is further away from the origin than $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ and for $k<1$ it is more towards the origin.

$3.5 x y=1$

To sketch this hyperbola, as before

- Set the constant term in the equation to zero:

$$
x y=0
$$

to find the asymptotes $x=0$ and $y=0$.

- Find a point that lies on the hyperbola. $(1,1)$ works, so does $(-1,-1)$
- Draw the hyperbola as below:

$3.6 \quad x y=-1$

This has the same asymptotes as $x y=1$ (namely, $x=0$ and $y=0$) but now the points $(1,-1)$ and $(-1,1)$ lie on the hyperbola instead. Draw this as follows:

$3.7 \quad \mathrm{xy}=\mathrm{k}$

This, again, has the same asymptotes as $x y=1$. The curve is further away from the origin when $k>1$ and more towards the origin when $k<1$ than $x y=1$:

$3.8 \mathrm{xy}=-\mathrm{k}$

This has the same asymptotes as $x y=-1$ (which are the same for $x y=1$). The curve is further away from the origin when $k>1$ and more towards the origin when $k<1$ than $x y=1$.

