How to draw conics

March 9, 2023

These directives are only for sketching parabolas, ellipses, and hyperbolas schematically. All constants below are positive.

1 Parabolas

We shall assume that you know how to draw $y = x^2$ in the x - y plane. Note that all the parabolas below pass through the origin.

1.1 $y = ax^2$

For a > 1, you draw the parabola $y = ax^2$ "above" the parabola $y = x^2$.

For b > a > 1, you draw the parabola $y = bx^2$ above $y = ax^2$.

1.2 $y = -ax^2$

To get the graph of $y = -x^2$, you reflect the graph of $y = x^2$ in the x-axis.

The graph of $y = -ax^2$ for a > 1 is below that of $y = -x^2$. For 0 < a < 1, it is above the graph of $y = x^2$ (opening in the same direction as $y = -x^2$).

1.3 $x = y^2$

The graph of $x = y^2$ is obtained by reflecting the graph of $y = x^2$ in the line y = x. It may help to think of this as rotating the graph of $y = x^2$ clockwise by 90° and relabelling the axes so that y is up and x is to the right.

1.4 $x = ay^2$

The graphs for $y = ax^2$ when a > 1 is to the right of that of $x = y^2$

and for 1 > a > 0 it is to the left of $x = y^2$, opening in the same direction as $x = y^2$.

1.5 $x = -ay^2$

and for 1 > a > 0 it is to the right of $x = y^2$, opening in the same direction as $x = y^2$.

$\mathbf{2}$ Ellipses

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 2.1

To draw $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we first find the points where the curve intersects the axes: these points are (a, 0), (-a, 0), (0, b), (0, -b).

We then draw a "squished" circle passing through these four points.

2.2
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = k$$

There is nothing to do when k < 1. For k = 0, we just get the point (0, 0). For k < 1, the graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = k$ is inside that of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

and for k > 1, the graph of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = k$ is outside that of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

The figures above were drawn for a > b, when a < b, the same trend holds, but this time, the ellipses are fatter in the y-direction.

2.3 Remark

When drawing ellipses, your sketch does not have to be to scale but make sure that it shows which direction the ellipse is thinner/fatter clearly. You should do this even if a is ever so slightly larger/smaller than b. Also note that when a=b, we have a circle.

Hyperbolas 3

3.1
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

To sketch $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, proceed as follows:

• Set the constant term in the equation to zero:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

to find the asymptotes of the curve: ay = bx and ay = -bx.

- Find which axis the curve intersects. Here setting y = 0 gives x = a and x = -a, so the curve intersects the x-axis.
- Draw the two branches of the hyperbola passing through (a, 0) and (-a, 0):

3.2
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = k$$

Here, the hyperbola as the same asymptotes as $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. For k > 1, the curve is further away from the origin than $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and for k < 1 it is more towards the origin.

3.3 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

To sketch $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$:

• Set the constant term in the equation to zero:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

to find the asymptotes of the curve: ay = bx and ay = -bx.

- Find which axis the curve intersects. Here setting x = 0 gives y = b and y = -b, so the curve intersects the y-axis.
- Draw the two branches of the hyperbola passing through (0, b) and (0, -b):

3.4
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -k$$

Here, the hyperbola as the same asymptotes as $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$. For k > 1, the curve is further away from the origin than $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ and for k < 1 it is more towards the origin.

3.5xy = 1

To sketch this hyperbola, as before

• Set the constant term in the equation to zero:

xy = 0

to find the asymptotes x = 0 and y = 0.

• Find a point that lies on the hyperbola. (1,1) works, so does (-1,-1)

• Draw the hyperbola as below:

3.6 xy = -1

This has the same asymptotes as xy = 1 (namely, x = 0 and y = 0) but now the points (1, -1) and (-1, 1) lie on the hyperbola instead. Draw this as follows:

	-							4								
•	•	•		•	•	•	11	My			•					
•	1.0		1.	١.	•		1.					1.			1.	
•	•				-	(-1)	1)									
•	•		•	•				0,	-1)	-	N .		-	~	x	
•	•	•	•	•	•	•	•	./	e .	•						-
•	•	•	•	•	•	•	•		•		•					
•	•	•	•		•		. /	1.								

3.7 xy = k

This, again, has the same asymptotes as xy = 1. The curve is further away from the origin when k > 1 and more towards the origin when k < 1 than xy = 1:

3.8 xy=-k

This has the same asymptotes as xy = -1 (which are the same for xy = 1). The curve is further away from the origin when k > 1 and more towards the origin when k < 1 than xy = 1.

