Math 2415

Paper Homework \#11

1. 15.3, Double Integrals in Polar Coordinates:

(a) Calculate $\iint_{D} x y d A$ where D is that portioin of the annulus $4 \leq x^{2}+y^{2} \leq 9$ that is in the first quadrant.
(b) Find the volume of the solid that is in the first octant and which is bounded by the cylinder $x^{2}+y^{2}=9$ and the plane $z=1+x+y$.
(c) Convert the iterated integral $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$ to polar coordinates and then evaluate.
2. 15.6, Triple Integrals in Rectangular Coordinates:
(a) Sketch the solid, E, bounded by the surfaces $z=x^{2}+y^{2}, x=0, y=0, z=0, x+y=1$. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then calculate $\iiint_{E} z d V$.
(b) Let E be the solid in the first octant $(x \geq 0, y \geq 0$, and $z \geq 0)$ that is bounded by the planes $x+z=2$ and $2 y+z=2$.
i. Sketch E. Hint: The intersection of the two slanted planes is a line. Find two points on that line, one on the z axis and the other in the $x y$-plane.
ii. Calculate $\iint_{E} z^{2} d V$.

