Math 2415

Paper Homework #11

1. 15.3, Double Integrals in Polar Coordinates:

- (a) Calculate $\iint_D xy \, dA$ where *D* is that portion of the annulus $4 \le x^2 + y^2 \le 9$ that is in the first quadrant.
- (b) Find the volume of the solid that is in the first octant and which is bounded by the cylinder $x^2 + y^2 = 9$ and the plane z = 1 + x + y.
- (c) Convert the iterated integral $\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2 + y^2) dx dy$ to polar coordinates and then evaluate.

2. 15.6, Triple Integrals in Rectangular Coordinates:

- (a) Sketch the solid, *E*, bounded by the surfaces $z = x^2 + y^2$, x = 0, y = 0, z = 0, x + y = 1. Each pair of the surfaces intersects in a curve. Be sure to include these curves in your sketch. Then calculate $\iiint_F z \, dV$.
- (b) Let *E* be the solid in the first octant ($x \ge 0$, $y \ge 0$, and $z \ge 0$) that is bounded by the planes x + z = 2 and 2y + z = 2.
 - i. Sketch *E*. *Hint:* The intersection of the two slanted planes is a line. Find two points on that line, one on the *z* axis and the other in the *xy*-plane.
 - ii. Calculate $\iint_E z^2 dV$.