Math 2415

Paper Homework #2

1. [12.4, Cross Products]

Let $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j}$ and $\mathbf{c} = 3\mathbf{j} + \mathbf{k}$.

- (a) Find the length of a.
- (b) Find a unit vector that is orthogonal to both a and c.
- (c) Calculate the area of the parallelogram determined by the vectors a and c.
- (d) Calculate the volume of the parallelipiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} .

2. [12.4, Cross Products]

- (a) Explain why there must be at least one vector **v** so that $(1, 2, 4) \times \mathbf{v} = (2, -3, 1)$.
- (b) Find a vector **v** so that $(1, 2, 4) \times \mathbf{v} = (2, -3, 1)$.
- 3. **[12.4, Cross Products]** Suppose that $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j}$ and $\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j}$. Use
 - (a) the linearity property $\mathbf{u} \times (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \times \mathbf{v} + b\mathbf{u} \times \mathbf{w}$,
 - (b) the anti-symmetry property $\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$, and
 - (c) the formulae $\mathbf{i} \times \mathbf{j} = \mathbf{k}$,

to derive the formula

$$\mathbf{u}\times\mathbf{v}=(u_1v_2-u_2v_1)\mathbf{k}.$$

4. [12.5A, Lines]

- (a) Find a vector parametrization for the line, \mathcal{L} , passing through the points P = (1, 2, 3) and Q = (9, -4, 7).
- (b) Which of the points are on the line *L*? Which are on the line and are between *P* and Q? Why?
 - i. (17, 10, −11),
 - ii. (5, −1, 5),
 - iii. (17, −10, 11).
- (c) Determine whether the line, \mathcal{L} ,
 - i. intersects the *yz*-plane,
 - ii. intersects with the *x*-axis.
- (d) Find a parametrization for a line whose intersection with the z-axis is one point.