Math 2415

Paper Homework \#2

1. [12.4, Cross Products]

Let $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}, \mathbf{b}=\mathbf{i}-3 \mathbf{j}$ and $\mathbf{c}=3 \mathbf{j}+\mathbf{k}$.
(a) Find the length of \mathbf{a}.
(b) Find a unit vector that is orthogonal to both a and c.
(c) Calculate the area of the parallelogram determined by the vectors \mathbf{a} and \mathbf{c}.
(d) Calculate the volume of the parallelipiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}.

2. [12.4, Cross Products]

(a) Explain why there must be at least one vector \mathbf{v} so that $(1,2,4) \times \mathbf{v}=(2,-3,1)$.
(b) Find a vector \mathbf{v} so that $(1,2,4) \times \mathbf{v}=(2,-3,1)$.
3. [12.4, Cross Products] Suppose that $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}$. Use
(a) the linearity property $\mathbf{u} \times(a \mathbf{v}+b \mathbf{w})=a \mathbf{u} \times \mathbf{v}+b \mathbf{u} \times \mathbf{w}$,
(b) the anti-symmmetry property $\mathbf{v} \times \mathbf{u}=-\mathbf{u} \times \mathbf{v}$, and
(c) the formulae $\mathbf{i} \times \mathbf{j}=\mathbf{k}$,
to derive the formula

$$
\mathbf{u} \times \mathbf{v}=\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} .
$$

4. [12.5A, Lines]

(a) Find a vector parametrization for the line, \mathcal{L}, passing through the points $P=(1,2,3)$ and $Q=(9,-4,7)$.
(b) Which of the points are on the line \mathcal{L} ? Which are on the line and are between P and Q ? Why?
i. $(17,10,-11)$,
ii. $(5,-1,5)$,
iii. $(17,-10,11)$.
(c) Determine whether the line, \mathcal{L},
i. intersects the $y z$-plane,
ii. intersects with the x-axis.
(d) Find a parametrization for a line whose intersection with the z-axis is one point.

