Math 2415

Paper Homework #3

- 1. **[12.5B: Planes]** Let A = (1, 2, 3), B = (5, -1, 0) and C = (4, 3, 7).
 - (a) Find a parametrization, $(x, y, z) = \mathbf{r}(s, t)$, of the plane, \mathcal{P} , containing A, B, and C.
 - (b) For each of the three points, *A*, *B*, and *C*, find values of the parameters (*s*, *t*) in the parameterization you found in (a).
 - (c) Find a level set equation of the plane, \mathcal{P} , containing the points A, B, and C.
 - (d) Check that A, B, and C each satisfy the equation you derived in (c).
 - (e) Let \mathcal{L} be the line passing through the point (-1, 0, 2) that is parallel to the vector (1, 0, 2). Find the point of intersection of this line with the plane, \mathcal{P} .
 - (f) Let Q be the plane that contains the point (3, 1, 2) and that is perpendicular to the line \mathcal{L} in (e). Find a parametrization for the line of intersection of the planes \mathcal{P} and Q.

2. [15.7A: Cylindrical Coordinates]

- (a) Sketch the surface whose equation in cylindrical coordinates is given by r = 2.
- (b) Convert the equation r = 2 to spherical coordinates.
- (c) Convert the equation $x^2 + y^2 3z^2 = 1$ to cylindrical coordinates.
- (d) Sketch the solid where $3 \le r \le 4$, $\pi/4 \le \theta \le \pi/2$, $0 \le z \le 1$.
- 3. [15.8A: Spherical Coordinates] Consider the following points, curves, surfaces, and solids
 - (i) The surface $\rho = 2$.
 - (ii) The curve where $\rho = 2$ and $\theta = \pi/4$.
 - (iii) The curve where $\rho = 2$ and $\phi = 3\pi/4$.
 - (iv) The point $(\rho, \theta, \phi) = (2, \pi/4, 3\pi/4)$.
 - (v) The solid where $\rho \leq 2$, $0 \leq \theta \leq \pi/4$ and $\pi/2 \leq \phi \leq 3\pi/4$.

Now do the following problems:

- (a) Sketch (i)-(iv) altogether in one plot, with labels.
- (b) Convert the equation $\rho = 2$ to cylindrical coordinates.
- (c) Find the rectangular and cylindrical coordinates of the point in (iv).
- (d) Sketch (v). [Use a different plot from the one in (a).] **Hint:** This solid is enclosed by 5 surfaces. Sketch each surface and then visualize the solid region enclosed by them. The surfaces are $\rho = 2$, $\theta = 0$, $\theta = \pi/4$, $\phi = \pi/2$, and $\phi = 3\pi/4$. You can make a model of this solid by making 4 cuts in an apple. Try it! In fact, if you cut an apple and turn in photos of the solid you cut out which are taken from a couple of angles you can get full credit (instead of sketching the solid by hand).