Math 2415

Paper Homework \#9

1. 14.7: Global Optimization Find the absolute maximum and minimum values of $f(x, y)=$ $y+2 x-x y$ on the closed triangular domain with vertices $(0,0),(2,0)$, and $(0,6)$.
2. 14.7: Global Optimization Find the absolute maximum and minimum values of the function $f(x, y)=x^{2} y$ on the domain $D=\left\{(x, y) \mid x \leq 0, y \geq 0, x^{2}+y^{2} \leq 9\right\}$
3. 14.8, Constrained Optimization: Use the method of Lagrange multipliers to find the maximum and minimum of $z=f(x, y)=x^{2} y$ on the circle $x^{2}+y^{2}=4$. To the extent possible solve the problem using a geometric method (a picture) as well as algebraically.
4. 14.8, Constrained Optimization: Use the method of Lagrange Multipliers to find the absolute maximum and absolute minimum of the function $f(x, y)=x^{2}+(y-2)^{2}$ on the ellipse $x^{2}+2 y^{2}=18$. [Hint: There are 4 critical points.]
