1 Chapter 4. Calculus on Surfaces

For \(\vec{x} : D \in \mathbb{R}^2 \to \mathbb{R}^3 \) to parameterize a surface \(M \), so we can do calculus properly on \(M \) we need that:

- The grid curves form a coordinate system on \(M \)
- There is a tangent space to \(M \) at each point of \(M \). Note \(\vec{x}^* (U_1) = \partial \vec{x}/\partial u = \vec{x}_u \)
- Later we will see that tp gaurantee these two requirements hold it is enough that \(\{ \vec{x}^* (U_1), \vec{x}^* (U_2) \} \) is a linearly independent set. In this case, the tangent space will be defined to be the 2D vector space \(T_{\vec{x}(p)}M = \text{Span}\{ \vec{x}^* (U_1), \vec{x}^* (U_2) \} \subset T_{\vec{x}(p)}\mathbb{R}^3 \).

Definition 1.1. \(\vec{x} : D \in \mathbb{R}^2 \to \mathbb{R}^3 \) is a regular mapping if \(\forall \vec{p} \in D \), the tangent mapping \(\vec{x}^* : T_p\mathbb{R}^2 \to T_{\vec{x}(p)}\mathbb{R}^3 \) satisfies one of the following equivalent conditions:

- \(\{ \vec{x}^* (U_1), \vec{x}^* (U_2) \} \) is a linearly independent set
- \(\vec{x}_u \times \vec{x}_v \neq \vec{0} \)
- \(\vec{x}^* \) is one-to-one
- Let \(D\vec{x} = [\partial \vec{x}/\partial u, \partial \vec{x}/\partial v] \) be the 3 x 2 matrix of partial derivatives of \(\vec{x} \). Then, \(\text{rank}(D\vec{x}) = 2 \).

Definition 1.2. (Coordinate Patch)

- A coordinate patch is a mapping \(\vec{x} : D \in \mathbb{R}^2 \to \mathbb{R}^3 \) that is one-to-one and regular on an open set \(D \in \mathbb{R}^2 \)
- A set \(D \in \mathbb{R}^2 \) is open if \(\forall \vec{x}_0 \in D \), there exists \(\epsilon > 0 \) so that open ball radius \(\epsilon \), centered at \(\vec{x}_0 \) lies entirely in \(D \). (this ball is the set \(\{ \vec{x} \in \mathbb{R}^2 \mid ||\vec{x} - \vec{x}_0|| < \epsilon \} \).
- The image \(M = \vec{x}(D) \) of a coordinate patch is an example of a surface.

Notes:

- We need \(\vec{x} \) regular to ensure tangent space to \(M \) exists and is 2D
• We need \(\vec{x} \) one-to-one to rule out self intersections in \(M \)

• Then \(M \) looks locally like a plane and we can use \(\vec{x} \) to turn calculus problems on \(M \), into calculus problems on \(D \in \mathbb{R}^2 \), which are easy.

Example Graph of a function \(z = f(x, y) \). For example,

\[
z = f(x, y) = 3x^2 + 4y^2
\]

which is a elliptic paraboloid. A Monge Patch is a parametrization of \(z = f(x, y) \) of the form \(\vec{x}(u, v) = (u, v, f(u, v)) = (x, y, z) \) (graph in hand written notes). We have that

\[
D\vec{x} = \begin{pmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
\frac{\partial f}{\partial u} & \frac{\partial f}{\partial v}
\end{pmatrix}
\]

the columns of \(D\vec{x} \) are linearly independent regardless of \(f \) since there are 2 pivots.

Notice. For any coordinate patch \(\vec{x} : D \in \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) there is an inverse mapping \(\vec{x}^{-1} : M = \vec{x}(D) \rightarrow D \) given by \(\vec{x}^{-1}(x, y, z) = (u, v) \), where \(\vec{x}(u, v) = (x, y, z) \). The inverse map, \(\vec{x}^{-1} \), is well defined as \(\vec{x} \) is one-to-one.

For a Monge Patch \(\vec{x}^{-1} \) is continuous. But there exists coordinate patches for which \(\vec{x}^{-1} \) is not continuous. In order to avoid self intersections in \(M \) and to ensure the calculus calculations we do on \((u, v) \) space can be correctly interpreted on \(M \) we also need the patch to be proper.

Definition 1.3. A coordinate patch is called \textbf{proper} if \(\vec{x}^{-1} \) is continuous.

Definition 1.4. A surface in \(\mathbb{R}^3 \) is a subset \(M \in \mathbb{R}^3 \) so that for every point \(p \in M \) there is a proper patch \(\vec{x} : D \rightarrow \mathbb{R}^3 \) whose image \(\vec{x}(D) \) is a subset of \(M \) that contains a neighborhood \(N \) of \(p \).

More Examples

Geographical patch on the sphere, \(S^2 \).

\[
\vec{x}(u, v) = (r \cos v \cos u, r \cos v \sin u, r \sin v)
\]

where \(-\pi < u < \pi \) and \(-\pi/2 < v < \pi/2 \). \(u \) is angle in \(xy \)-plane from \(x \)-axis and \(v \) is angle above equator. This patch covers all of sphere except north and south poles and a circle of longitude on the back side of the sphere in the \(xz \)-plane (where \(x < 0 \)). Taking a cross product you can check the patch is regular. You can also check it is 1-1 and proper.