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Abstract
One important challenge for speaker identification (SID) 
system is sustained performance in diverse conditions. This 
study presents a novel front-end feature extraction method for 
SID in clean, noisy, and channel-mismatched acoustic 
conditions. To address the problem, the perceptual minimum 
variance distortionless response (PMVDR) feature is 
employed. While PMVDR has been successfully used for 
noisy ASR, it has not been considered for SID. We also 
incorporate longer temporal speaker knowledge based on the 
shifted delta cepstral (SDC) algorithm. The evaluation over
YOHO and another new diversified Robust Open-Set Speaker 
Identification (ROSSI) database show that both PMVDR and 
the union with SDC can improve performance significantly. 
Compared with traditional feature extraction, PMVDR and 
PMVDR-SDC always give improvement across diverse 
adverse conditions. Also, PMVDR-SDC can contribute 
additional improvement in the presence of noise and channel 
mismatch.
Index Terms: PMVDR, SDC, speaker identification, noise, 
robustness

1. Introduction
Speaker identification (SID) systems are increasingly 
employed in real-world applications such as voice 
authentication, forensics, and surveillance. The idea behind 
any SID system is to identify the inherent differences in the 
different speakers’ articulatory organs (the structure of the 
vocal tract, the size of the nasal cavity, and vocal cord 
characteristics) and the manner of speaking (wording, 
repetition, prosodic traits). 

In SID, although system derived from clean speaker 
speech data can be recognized usually with high accuracy, 
recognition performance decreases dramatically for noisy and 
channel mismatched speech. The adverse condition from 
application poses real challenge to any practical SID system. 
Significant amount of research has been conducted in finding 
speech features that would yield maximum information about 
the identity of the speakers, thereby increasing the accuracy of 
the SID system. Most published works in the areas of speech 
recognition and speaker recognition focus on speech under the
noiseless environments and few published works focus on 
speech under noisy conditions [1, 2, 3, 4].

Mel frequency cepstral coefficients (MFCCs) have proven 
to be one of the most effective feature sets for speech 
processes, especially automatic speech recognition (ASR) and 
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SID. They are computed by applying a Mel-scaled filter-bank 
either to the short-term FFT magnitude spectrum or to the 
short-term LPC-based spectrum to obtain a perceptually 
meaningful smoothed gross spectrum. Both the FFT and LPC-
based spectrum, however, have limited ability to remove 
undesired harmonic structures, especially for high pitch speech 
[5], which may affect speaker representation. Furthermore, 
studies have shown that FFT-based MFCCs are less effective 
to suppress noise disruption than other feature front-end [6].

Perceptual minimum variance distortionless response 
(PMVDR) feature front-end, on the other hand, can directly 
warps the FFT power spectrum of speech during the feature 
estimation process, removing the traditional Mel-scaled 
filterbank as a perceptually motivated frequency partitioning 
[8]. It can provide a better approximation of the perceptual 
scales. Another advantage is that PMVDR can effectively 
model medium and high-pitch speech and track the upper 
envelope. Therefore, it has the potential to provide more 
details about speaker excitation information and yield higher 
accurate recognition. Although researchers have already 
shown that PMVDR can provide superior performance in 
ASR, dialect identification (DID) and emotion identification 
(EID), little research has ever explored its application for 
speaker identification.

In language identification, shifted delta cepstrum (SDC) 
approach [7] is widely used. SDC algorithm can incorporate 
additional temporal information into the feature vector. 
Although we can also try to integrate longer temporal details 
by increasing windowing length before FFT process, it is 
limited by the short-term stationary assumption behind all 
speech processing techniques. This study, also the major 
contribution, will mainly rely on PMVDR and SDC to explore 
the robust speaker identification tasks.

The remainder of this paper is organized as follows: Sec. 2 
describes the two databases that are used to develop and 
evaluate the system. The baseline system is introduced in Sec. 
3. Sec. 4 presents the different feature extraction schemes. Sec. 
5 provides the SID experiment results and analysis and Sec. 6 
presents conclusion and future work. 

2. Evaluation Corpora
To verify performance, we work on two corpora. One is clean 
and another is realistic with diversified mismatched condition.

2.1. YOHO
The YOHO Database consists of 138 speakers, 30 of them 
female and 108 female. The data was collected over a three 
month period, with approximately 3 day verification intervals. 
The speech data consists of a series of combination-lock 
phrases, for example 24-52-78. For each speaker, there are 4 
enrollment sessions (each contains 24 phrases) and 10 
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verification sessions (each contains 4 phrases). The data was 
recorded at 8kHz with a 3.8kHz bandwidth at 16 bits per 
sample. This paper fully follows the corpus structure (Tab. 1). 
Although this database contains some recording environment 
noise, we call it “clean” and will artificially introduce some 
noise to produce different noisy versions of the database to test 
the robust performance of different feature extraction front-
end in the matched acoustic conditions.

Table 1. YOHO Database.

#
speaker # session/speaker # total 

session
Avg. duration 

(sec.)

Training 138 96 13248 4.05

Testing 138 40 5520 4.14

2.2. ROSSI
We also use the Robust Open-Set Speaker Identification 
(ROSSI) database, which is designed to test and evaluate the 
robustness of both closed-set and open-set SID systems in 
various mismatched conditions.  There are 10 evaluation sets 
total, two (set 9 and 10) of which are blind and can only be 
evaluated by the corpus owner. Aside from these blind sets, 
each evaluation set contains 100 in-set speakers (data for both 
training and testing) and 100 out-of-set speakers; here we only 
use in-set speakers for this research (Tab. 2). Each set has 
different channel with or without different background noise, 
which aims to capture real situations of SID and no artificial 
noise is added. From Tab. 2, we can see that all the data set are 
very noisy (SNR<10dB) except that set 1 is relative clean.

Table 2. ROSSI Database. (Mic=Microphone, 
Cell=Cellphone, “Various” represents the case which 
has different channel, noise mixed conditions seen in 

Set 1 through 6.).

Set Train
SNR
(dB) Test 

SNR
(dB) Type

1
Table-

Mic
34.6 Lapel-

Mic
27.2 Mic Physical 

Separation

2
Cell

Public
6.1 Cell 

Public
5.8

Noisy
(Channel &
Background 
Variation)

3
Cell

Public
6.1 Cell 

Vehicle
5.9

4
Landline 
Office

7.7 Cell 
Office

8.0

5
Landline 
Office

7.7 Cell 
Vehicle

5.9

6
Cell 

Roadside
5.8 Landlin

e Office
7.7

7
Cell

Office
7.9

Various
6.6

Mixed
(channel & 

noise)8
Cell 

Vehicle
5.9

Various
6.4

3. GMM-Baseline System
The Gaussian Mixture Models (GMM) classifier is a popular 
method for text independent SID. We use this approach as our 
baseline system (We note that GMM based classifier is not 
state-of-the-art SID system, the reason for this choice is that 
the focus here is front-end and complicated backend system 
may make it difficult to single out contribution only due to the 
feature-end difference.). Figure 1 shows the block diagram of 

the baseline GMM training/testing system. The noise 
reduction module is implemented by using extended spectral 
subtraction to mitigate the noise disturbance [11]. The feature 
extraction module is the focus of this work and will be 
supplied with different schemes discussed in Sec.4. The 
feature warping module is used to Gaussianlize the extracted 
feature to approach normal distribution and thus better match 
the GMM modeling assumption. Another benefit is that it has 
noise robustness [9]. Then speaker dependent GMMs are 
trained. While testing, the incoming audio is classified as a 
particular speaker based on the maximum posterior probability 
measure over all the GMM candidates. Except the feature 
extraction module, all the other modules are fixed to provide a 
fair comparison.

The mainstream feature for SID is MFCC and therefore is 
used as baseline feature. In our study, an analysis window of 
20msec duration is used, with 10msec frame update rate. We 
use traditional 36-dimensional feature vector together with the 
GMM classifier to provide a benchmark system.

Figure 1: Baseline GMM based SID system.

4. Feature Extraction Front-end

4.1. PMVDR
Previous research [8] showed that PMVDRs are better able to 
model the upper spectral envelope at the perceptually 
important harmonics, which may include important speaker 
clues. Unlike MFCC parameters, PMVDRs do not require an 
explicit filterbank analysis of the speech signal. We have 
found this new feature representation provides not only 
robustness against noise in speech recognition, but also higher 
accuracy in clean speech tasks. Here, we propose to test this 
feature in the context of SID. A block diagram of the PMVDR 
feature extraction [8] is shown in Figure 2.

Figure 2: PMVDR feature extraction process.

It has been shown that implementing the perceptual scales 
through the use of a first order all-pass system is feasible. In 
fact, both Mel and Bark scales are determined by changing the 
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where represents the linear frequency. Here the value of 
controls the warping degree. We will optimize the warping 
factor first before we run any PMVDR-based experiment. 

Utilizing direct warping on the FFT power spectrum by 
removing the filterbank processing step leads to the 
preservation of almost all the information in the short-term 
speech spectrum. We can now summarize the remainder of the 
proposed PMVDR algorithm as follows:

1) Obtain the perceptually warped FFT power 
spectrum,

2) Compute the “perceptual autocorrelations” by 
utilizing the IFFT on the warped power spectrum,

3) Perform a ith order LP analysis via Levinson-Durbin 
recursion using perceptual autocorrelation lags,

4) Calculate the ith order MVDR spectrum from the LP 
coefficients according to Eq.(1)  in  [8],

5) Obtain the final cepstrum coefficients using the 
straightforward FFT-based approach.

Finally, we use 36-dimensional PMVDR features and each 
feature vector contains 12 statics, deltas and delta-deltas. We 
use the same windowing and frame skipping as in MFCC 
before further processing. Cepstral mean normalization is also 
utilized. Since PMVDR removes the filterbank processing, we 
can avoid the demanding computation and noise sensitivity 
incurred by filterbank processing. This is crucial to realistic 
SID system.

4.2. SDC
The aim of including shifted delta cepstrum (SDC) in the 
context of SID is to incorporate additional temporal 
information into the feature vector. The SDC is in fact k
blocks delta cepstrum coefficients [7]. Suppose the basic set of 
cepstrum coefficients, { ( )jc t , j = 0, 1, …, N-1}, is available 

(which are PMVDR statics in this study) at frame t, where j is 
dimension index and N the number of cepstrum coefficients. 
The SDC feature can be expressed as following:

( ) ( ) ( ) ( ),

0,1,..., 1
iN j j js t c t iP d c t iP d

i k
(3)

where d is the time difference between frames, P is the time 
shift between blocks, and k is the total number of blocks. The 
SDC coefficients can be concatenated with the basic cepstrum 
coefficients. Thus, we can obtain the feature vector as { ( )jc t

, j=0,1, …, N-1; ( ) ( )iN js t , j=0, 1, …, N-1, i=0, 1, …, k-1}, 

which is the SDC version of features. 
The parameter configuration of SDC N-d-P-k in language 

identification is 7-1-3-7. In our SID task, we fix the optimal 
configuration at 10-1-3-3 based on hill-climbing searching.

5. Experiment Results
To evaluate the proposed front-end feature schemes, we will 
compare PMVDR, PMVDR-SDC with MFCC-based SID 
system. To explore the robustness of the different feature 
extraction schemes in noisy conditions, we also introduce 
additive white Gaussian noise (AWGN) with the varying SNR 
(signal noise ratio) level from -5dB to 20dB into training set 
and testing set of the YOHO database. To further explore the 
potential benefit of the proposed schemes, a similar 
experimental set-up is also carried out on the more realistic
ROSSI corpus.

5.1. Warping Factor Optimization
Before exploring the performance of PMVDR on SID system, 
we need to optimize the warping factor. The range of warping 
factor is [0, 1], we search the space with the step 0.1 and 
summarize the results in Figure 3. From the searching results, 
we can see [0.1, 0.5] is an ideal searching space, we can get 
optimal value at 0.4 for the PMVDR warping factor and will 
use this optimal value in the rest of this study for PMVDR-
involved feature extraction front-end.

Figure 3: PMVDR  Warping Factor Optimization.

5.2. Feature Extractions Performance
Now we consider an evaluation of the effectiveness of the 
proposed various schemes. All GMM-based classifiers 
backend are based on the same experiment setup as in Sec. 3, 
and MFCCs are the feature for the baseline system. The noise 
robustness performance of the features under different SNR 
level on the noisy versions of YOHO is summarized in Tab. 3.
This pilot experiment is only to verify the effectiveness of 
proposed schemes in a single variation: noise. The noise level 
is always matched, namely, the train and test set have the same 
SNR level, so we also perform the evaluation in a more 
realistic corpus, ROSSI, and check the performance of 
different front-end in channel, noise mismatch condition, 
which is reported in Figure 4.

Table 3. SID performance on YOHO Database.

Error Rate (%) -5dB 0dB 10dB 20dB clean

MFCC 53.06 21.49 3.33 1.00 0.36

PMVDR 45.45 17.63 2.99 0.96 0.25

PMVDR+SDC 38.71 14.46 2.37 0.71 0.27

5.3. Analysis
From Tab. 3 we can see that in clean condition, both the 
performance of PMVDR and the union of PMVDR and SDC 
are better than MFCC with the error rate decreased by 31% 
and 25%. Since MFCC+SDC is always worse than MFCC, so 
we do not test MFCC+SDC in the rest of this study.

This demonstrates PMVDR-based feature extraction can 
better capture the speech characteristics of different speakers. 
Although MFCCs perform well in less  noisy condition, they 
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Figure 4: SID performance on ROSSI Database.

are much worse than other feature front-end in strong noise 
disturbance. When the SNR is -5dB, PMVDR and PMVDR-
SDC can decrease the error rate by 14% and 27%, 
respectively. When SNR is varied from -5dB to 20dB, we can 
observe consistently that the noise robustness of PMVDR-
SDC is always the best and that of MFCC is always inferior to 
the other two.
        From Figure 4, PMVDR performs better than MFCC in 
all evaluation sets except set 1 and 7, on which their 
performance are similar.  PMVDR-SDC can give further
improvement in all evaluation sets except in set 1 and 6. On 
set 6 it gives the similar performance as MFCC and on Set 1 
(with only microphone-channel mismatched situation), the 
introduction of SDC is backfired and deserve further analysis. 
In mixed cases, set 7 and 8, we can see clearly that PMVDR-
SDC always give consistent better performance.
       Compared with MFCC, PMVDR does not require an 
explicit filterbank analysis and thus are less sensitive to noise 
disturbance, similar results was also reported in other 
publication in ASR[8] and EID[6]. The introduction of SDC is 
mean to incorporate additional temporal information into the 
feature vector and can bring consistent robust improvement to 
SID in noisy match/ mismatch, and channel mismatch 
condition. This benefit comes from the cepstrum substraction 
in Eq.(3). Although we can incorporate longer speech 
information by enlarging the windowing length during speech 
processing, it is strictly limited by the inherent short-term 
stationary premise of speech processing since all the human 
being’s speech related organs can be regarded as stationary 
only in a very short period.

6. Conclusions
To improve system robustness, signal processing or model 

adaptation for noise and channel is needed to ensure consistent 
performance of SID, which is challenging in real applications. 
We approached this issue from the feature extraction front-
end, the very first step in all SID system. The PMVDR feature 
extraction, which has not been investigated in the context of 
SID, outperforms the baseline system in both clean (with error 
rate decreased by 31%, relatively) and strong noise 
disturbance (with error rate decreased by 14%, relatively). To 
further improve the system performance, we also explore the 
application of the SDC algorithm, which can give further 
relative system improvement up to 50% in clean condition and 
31% in strong noisy condition. 

The experiment on the more diversified and realistic 
corpus also verified the effectiveness of PMVDR across 
different conditions. PMVDR-SDC, especially, in the presence 
of noise and channel variation, can always give better 

performance than MFCC. One of the benefits of the 
introduction of SDC is that it can overcome the short-term 
stationary assumption to a degree and incorporate longer 
temporal structure information of speech to give more 
robustness to the SID system.

Although PMVDR can demonstrate better speech/speaker 
characterization ability and noise robustness, its warping 
factor need to be tuned to achieve optimal performance. In 
general, [0.1, 0.5] is an ideal searching space.

This is only a preliminary exploration in the front-end 
aiming to propose a good alternative to the popular MFCC. To 
fully confirm the validity of the proposed schemes, evaluation 
on more comprehensive tasks such as NIST SRE and state-of-
the-art back-end system (for example, Joint Factory Analysis 
or iVector) will be the future work of this study.  
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