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ABSTRACT

In this study we propose two methods to improve HMM
speech recognition performance. The first method employs
an adjustment in the training stage, whereas the second
method employs it in the scoring stage. It is well known
that speech recognition system performance increases when
the amount of labeled training data is large. However, due
to factors such as inaccurate phonetic labeling, end-point
detection, and voiced-unvoiced decisions, the labeling pro-
cedure can be prone to errors. In this study, we propose
a selective hidden Markov Model (HMM) training proce-
dure in order to reduce the adverse influence of atypical
training data on the generated models. To demonstrate its
usefulness, selective training is applied to the problem of
accent classification, resulting in a 9.4% improvement in
classification error rate.

The second goal is to improve HMM scoring perfor-
mance. The objective of HMM training algorithms is to
maximize the probability over the training tokens for each
model. However, this does not guarantee a minimized error
rate across the entire model set. Typically, biases in the
confusion matrices can be observed. We propose a method
for estimating the bias from input training data, and in-
corporating it into the general scoring algorithm. Using
this technique, a 9.8% improvement is achieved in accent
classification error rate.

1. INTRODUCTION

For speech recognition, the two most popular training
strategies are hidden Markov models [13], and artificial
neural networks (ANN) [11]. In general, HMM’s are pre-
ferred over neural networks, because their implementations
are simpler and faster. Moreover, HMM performance has
been shown to be slightly better than neural networks.
Recently, HMM-ANN hybrids were proposed which com-
bine both modelling strategies in order to improve per-
formance [2]. Recent developments in speech recognition
technology have resulted in many speech recognition sys-
tems achieving acceptable error rates. However, the per-
formance of these systems depends heavily on the com-
plexity of the task vocabulary as well as available training
data. For example, distinguishing between words such as
“white” and “wide” is clearly more difficult than distin-
guishing between “hot” and “destination”. Studies have
been conducted that attempt to increase the separability
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among similar speech patterns. Linear discriminant analy-
sis [6] is a method of transforming and scaling variables to
improve classification performance. It was first successfully
applied to speech recognition by Hunt [4] in Independent
Mel-scale Linear Discriminant Analysis (IMELDA). Vari-
ous studies have noted improvements in sub-word recogni-
tion using this technique [5, 7). Further refinements to this
technique by Ayer [3] resulted in its use for whole-word
recognition, and by Parris [12] to incorporate state spe-
cific mixture densities. Juang proposed another technique
in order to minimize the number of errors in the training
set [10] by weighing the feature set, resulting in improve-
ment in the highly confusable e-set.

In this paper, the problem of accent classification [1] is
taken under the framework of distinguishing among confus-
able speech patterns, since the goal is to distinguish among
different pronunciations of the same utterance. We pro-
pose modifications to the forward-backward training and
Viterbi scoring algorithms. In Sec. 2, we describe the se-
lective training method. In Sec. 3, the model bias removal
procedure is developed and employed during scoring of the
HMM’s. In Sec. 4, the accent database used in our ex-
periments is summarized. Sec. 5 presents the experiments
conducted, and discusses the results. Finally, conclusions
and future work are presented.

2. SELECTIVE TRAINING

In speech recognition, the generation of accurate models for
speech units is essential in achieving high performance. In
order to generate accurate models, one often needs a sub-
stantial amount of training data. However, it is not always
trivial to collect sufficient data, depending on the appli-
cation. For example, most speaker-dependent continuous
systems are expected to operate with a minimal amount of
training data. Even when there is sufficient training data
available, the data labeling is often prone to errors (inaccu-
rate phonetic labels, end-point detection, voiced-unvoiced
decision, etc.). These errors may cause modeling inaccura-
cies in the HMM training phase.

In Fig. 1, a scatter plot of a set of 2-dimensional feature
vectors is shown. The aim here is to distinguish between
two classes of data, labeled A and B. We would like to
generate statistical models for the two classes based on the
training data shown in the figure. The common approach
to this problem is to represent the two classes with 2-
dimensional Gaussian densities, with means and variances



computed from corresponding class samples. Following this
approach, the means for classes A and B are found to be
mai and mp; respectively. The corresponding variances
are represented by dashed ellipses. In the figure, an outlier
exists for both classes. These outliers bias the models, and
would result in test errors for the models that were just gen-
erated. Of course, if they were labeled correctly to begin
with, it would have been better to leave the models as they
are. However, if the labeling procedure is prone to errors,
it may be better to exclude these outliers in the training
process to estimate more accurate models. When the out-
liers are excluded, the means for the two classes shift to
may and mpy, and the new variances are represented with
the solid ellipses. It is clear that the new model statistics
can characterize the data better excluding outliers.

This approach can be extended to the training of HMM’s
from labeled data. For the application of foreign accent
classification, the labeling of the data may be extremely
unreliable depending on the level of accent each speaker
possesses. For example, an utterance from a non-native
speaker may be used in the training of accented models,
even though the speaker had perfect pronunciation. One
approach to the solution of this problem would be to gen-
erate initial models from bootstrap training data assuming
that they are correctly labeled. Then, the outliers in the
training data can be identified by testing the training data
using these initial models. Finally, the models could be re-
trained using the same training data excluding the outliers.
Another approach is to weigh the training tokens accord-
ing to their relative match to the initial models and their
degree of dissimilarity from the rest of the models. In this
case, the likelihood ratio can be used in calculating weights.
The weights for the training tokens can be calculated as
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(H;;x,#.' P(XiklA;)) /N =D

Wik

where ); is the :** word model, which consists of the mean
vectors p, covariance matrices X, mixture coeffient matrix
C, and state transition matrix A, and Xix is the k*” train-
ing token of the i** word. In terms of log-probabilities the
weight expression becomes
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In our experiments, we also used a relaxation parameter v
to control the dynamic range of weight adjustment,
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As v takes on larger values, the influence of the outliers on
the generated models is reduced. A special case of selective
HMM training is when no weight adjustment is applied
(i.e., when v = 0), which corresponds to traditional HMM
training. The Forward-Backward re-estimation equations
are adjusted to take into account the new set of weights for

the training tokens. The new set of equations becomes:
State transition matrix entries:
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where R is the total number of training observation se-
quences, w, is the weight assigned to 7" observation se-
quence, P, is the total probability of r** observation se-
quence given the model, and (%, ) is the probability of
making a transition from state ¢ to state 7 at time n. The
remainder of the parameter re-estimation equations are as
follows:

Mixture coefficients:
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Mean vector entries:

Cjk =

Yr

R
2»‘:1 Py
T

Covariance matrix entries:

Sores B Pomas €nlds K)(Xn = k) (Xn = psn)!
R N 5
Zr:l %,‘-: n=1 E"’(J’ k)
where £,(7, k) is the probability of being in state j at time

frame n with the k" mixture component accounting for
Xn, l.€..

N &n(i k)xXn
Ef:l E" (]? k)

ﬁjk =

Tk =

an(4)Bn(4)
oomy an(5)Bn(s)

Cjk fik(Xn)

&n(s, k) =
G:5) S comfim(xn)

SELECTIVE TRAINING ILLUSTRATION
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Figure 1: An illustration of the adverse influence of
outliers when creating statistical models.
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3. MODEL BIAS REMOVAL

Most errors in speech recognition are due to confusable
word pairs in the vocabulary set such as “white” vs.
“wide”, or subword units such as “f” vs. “s”. When the
confusion matrices for these systems are analyzed, we ob-
served biases towards one of the words in the confusable
pairs. For example, in a study on speech under stress [8],
the model for “wide” was favored by all the “wide” utter-
ances, as well as most “white” utterances. Our proposed
method is to balance the biases in the confusion matrices
with the constraint of maximizing the separation between
confusable word pair models or minimizing the error rate

in the training set.
BIAS ESTIMATION BETWEEN CONFUSABLE PAIR
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Figure 2: An illustration of model bias removal between
confusable word pairs.

Normally, when an observation vector sequence X is to
be classified as one of the two models A; and Az, we cal-
culate P(X|A1) and P(X|Az), and select the model which
results in the higher likelihood. The decision criterion can
be formulated as

A1
A2

if 6>0

otherwise

Choose

Choose

where 8 is the log-likelihood ratio zn(f}(%gl)). Although

this rule is mathematically correct and simple, at times
there may be a bias towards one of the models. This is es-
pecially true for speech recognition systems. Most speech
recognition systems generate models with the criterion of
maximizing the probability over the training tokens of each
word. However, this does not guarantee the minimization
of the error rate across the entire vocabulary. Our proposed
solution to this problem is to make the adjustment in the
scoring procedure instead of transforming the feature vec-
tor or modifying the training procedure as is the case with
most other confusion discriminant algorithms. Here, up-
dating the threshold (which is normally 0) in the decision
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rule above, will result in minimization of the total number
of errors. The new rule is expressed as:

Choose A
Choose Az

if 6>7

otherwise

where 7 is determined from the training data as follows.
Let X; and X denote the training observation vector sets
for the confusable pair word; and word; respectively. The
models generated from the training set are denoted as A,
and A;. Next, define log-likelihood ratio functions 8, and
92 as

P(Xinlh)
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where N is the number of training tokens for word; and
worda.

In Fig. 2, the probability distribution functions of 8, and
9, are plotted for a hypothetical case. In the top graph,
it can be seen that model 2 is selected in most of the er-
roneous decisions. In the lower graph of Fig. 2, the esti-
mate of the new threshold 7 is shown as the point where
the two distributions intersect. This point minimizes the
size of the shaded area, which is the total error region. If
p(61) = N(p1,L1), and p(62) = N(p2,L2), then the deci-
sion boundary 7 can be computed from the equation
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Taking the natural logarithm of both sides, results in,
__r=m)  (r-m)
In(o2) —In(o1) = — 20,2 + 50,2

If we rearrange the terms on both sides, the equation re-
duces to a second order polynomial of the form, A7?+ Br+

C = 0 where
A = 012 — 032
B = 20’1 —201°p2

C 012}422 - 022M12 -+ 20’12022(111(02) - ln(al))
The root of the polynomial which lies between g, and u2
is the new decision boundary.

4. ACCENT DATABASE

In order to investigate accent, a vocabulary of words was
established which contains accent sensitive phonemes or
phoneme combinations {1, 9]. Vocabulary choice was based
on a literature review of language education of American
English as a second language. The data corpus was col-
lected using a head-mounted microphone, from speakers
among the general Duke University community. The test
vocabulary consists of twenty isolated words (sample words



include: aluminum, thirty, bringing, target, bird). Avail-
able speech includes neutral American English, and En-
glish under the following accents: German, Chinese, Turk-
ish, French, Persian, Spanish, Italian, Hindi, Romanian,
Japanese, Russian, and others. For the studies conducted
here, we focus on American English speech from twenty-
seven speakers across the following accents: Turkish, Chi-
nese and German.

5. EVALUATIONS

We applied our proposed method for selective training to
foreign accent classification. Four accent types (neutral,
Turkish, German, Chinese) were considered in the experi-
ments. By using the selective training method, the average
classification rate using single words among 4 accents im-
proved from 62.8% to 66.3% for an open test set (a 9.4%
error reduction).

Next, the proposed bias removal method is applied to the
confusable word pairs in the SUSAS speech under stress
database [8]. Speech spoken under stressed style include
loud, angry, fast, slow, soft, clear, and Lombard effect con-
ditions. We considered 9 such word pairs, and concentrated
our efforts on distinguishing only between confusable word
pairs. The decision boundary was estimated for each word
pair from the speech of 6 speakers (12 tokens each). In
the test set, two different speakers, and 10 different types
of stress conditions from all speakers in the database was
included. The error rate was found to be 5.89% using the
Viterbi algorithm, and a threshold of 0 for the likelihood
ratio. When the model bias estimation method was used
to shift the thresholds for the confusable word pairs, the
error rate was reduced to 5.16% (a 12.36% improvement).
A total of 3024 words was used in the test set.

Next, the optimum boundary decision method is applied
to foreign accent classification. The method was used to
distinguish between neutral American accent and Turkish
accent in a 20-word database. The standard Viterbi algo-
rithm without bias removal resulted in an error rate of 3.8%
in the closed set. Using the estimated bias shift between
the accents for each word, the error rate was reduced to
1.6% (a 61.1% reduction from original). For the test set,
the error rate was reduced from 14.3% to 12.9% (a 9.8%
reduction from the original). The results are illustrated
in Table 1. Here, it is noted that the error rate in the
closed set improves substantially, with positive, but not as
substantial improvement for the test set. This can be ex-
plained by the fact that the optimum boundary decision
method concentrates highly on minimizing the error rate
on the closed set.

6. CONCLUSION

In this paper, two new techniques have been proposed to
improve the performance of speech recognition algorithms.
The first method was based on selective training, where
outliers are given reduced weight in the training phase.
The second method was based on a bias removal procedure
where a new likelihood decision boundary is estimated in
order to balance the overall error in the input vocabulary
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Error rates in classification of
Turkish accent versus neutral accent

Scoring method | Standard | After bias removal
Closed set 38% 1.6 %
Open test set 143 % 129 %

Table 1: Accent classification performance improve-
ment by bias removal over closed and test sets.

set. These methods were evaluated for an accent classifica-
tion task. Both methods resulted in consistent improve-
ment in classification rate. Finally, while the proposed
methods were evaluated using isolated word HMM’s, these
methods methods can easily be applied to other speech
research areas such as continuous speech recognition and
speaker 1D systems.
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