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Abstract— With the proliferation of smart portable devices,
more people have started using them within the vehicular
environment while driving. Although these smart devices pro-
vide a variety of useful information, using them while driving
significantly affects the driver’s attention towards the road. This
can in turn cause driver distraction and lead to increased risk
of crashes. On the positive side, these devices are equipped
with powerful sensors which can be effectively utilized towards
driver behavior analysis and safety. This study evaluates the
effectiveness of portable sensor information in driver assistance
systems. Available signals from the CAN-bus are compared
with those extracted from an off-the-shelf portable device
for recognizing patterns in driving sub-tasks and maneuvers.
Through our analysis, a qualitative feature set is identified
with which portable devices could be employed to prune the
search space in recognizing driving maneuvers and possible
instances of driver distraction. An absolute improvement of
15% is achieved with portable sensor information compared
to CAN-bus signals, which motivates further study of portable
devices to build driver behavior models for driver assistance
systems.

I. INTRODUCTION

Although driving might be considered an obvious habit,
even the slightest lapse in driver’s attention can potentially
lead to a near-crash/crash with varied levels of intensity.
Results from the 100-car Naturalistic Study showed that
over 75% of crashes and 65% of near-crashes were caused
due to driver inattention [1]. National Highway Transport
Safety Administration (NHTSA) has identified the use of
portable electronic devices within the vehicular environment
as one of the primary causes for driver inattention and driver
distraction [2]. Portable tablets and smart mobile phones fall
in this category.

Recent years have seen a proliferation in smart portable
devices such as mobile phones and tablets which are
equipped with a wide range of sensors from inertial mea-
surement units (IMU) (e.g., accelerometer and gyroscope) to
magnetometer and GPS receivers. These sensors, which are
included mainly for better gaming and user experience, along
with better and larger display, user interface, and constant
data connectivity make portable devices highly desirable.
Drivers generally use smart portable devices for listening to
music, navigation assistance, weather assistance, accessing
internet, and of course for communication over the phone.
These tasks are attention seeking and, if performed while
driving, could deviate driver’s attention from the road for a
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prolonged period leading to a near-crash/crash. Even though
new laws have recently been passed to prohibit the use of
portable devices while driving, with so many new features
and applications, it is becoming more difficult to define the
boundary within which these devices can be operated.

Over the past few decades, the automotive industry has
made tremendous advancements in increasing the safety
of vehicles and their occupants. From seat belts, air bags
and anti-lock braking systems (ABS) to Embedded Stability
Program (ESP), Forward Collision Warning (FCW) and
Collision Mitigation by Braking (CMBB), there are advanced
safety systems in the cars which constantly monitor the
vehicle and surrounding environment to ensure occupant
safety. This has been made largely possible by a robust
network which connects sensors, embedded systems and
actuators within the vehicle to form a complete system.
This network, which is called the Controller Area Network
(CAN) [3], carries all signals and information concerning the
present state of the vehicle. Valuable signals such as vehicle
speed, steering wheel angle, gas and brake pedal pressures
are available on this network bus, and henceforth in this study
will be addressed collectively as CAN-bus signals.

In spite of all the useful data available on the CAN-
bus, only a small portion of it is made accessible to the
outside world through an On-Board Diagnostic (OBD) port.
The available data mainly helps in troubleshooting as well
as obtaining vital information about the vehicle. The rest
of the CAN-bus data is, however, encrypted and restricted
from direct access, making it challenging for researchers as
well as commercial developers to implement, test, and deploy
advanced safety features in vehicles without the help and
support of car manufacturers. Therefore, it is worthwhile to
explore alternative sources of information which could be
utilized for active safety in vehicles.

Towards this goal, in this study, we investigate the ef-
fectiveness of sensor information extracted from an off-the-
shelf smart portable device for driving event recognition. In
order for active safety systems to provide proper assistance
to drivers, it is of great importance to detect and track
different driving maneuvers. Research in driving maneuver
recognition is not new [6], [7], [8], [9], [10], and several
researchers have used CAN-bus signals and obtained over
90% accuracy for this task [6], [9]. However, given the
challenges in accessing CAN-bus information, in [7] the
use of IMUs for maneuver recognition was investigated and
shown to be promising with a high accuracy near 95%.
In addition, the application of portable systems in vehicle
safety systems was suggested in [11], and more recently
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[12], [13] adopted smart portable devices to detect driving
style and drunk driving. This trend suggests that the sensor
loaded portable devices have the potential for being adopted
in driver assistance systems.

Rather than limiting the sensors being used, in this study,
effort has been made to assess the effectiveness of all
available sensors in a smart portable device towards detecting
8 distinct driving maneuvers. The performance is compared
against that obtained with available CAN-bus signals. Thus,
the main motivation in this paper is two-fold: 1) to assess
whether smart portable devices can be used to detect driving
maneuvers, and 2) to identify an efficient feature set or sensor
information for reliable and robust maneuver recognition in
vehicles.

II. SETUP AND DATA DESCRIPTION

To understand and develop safety systems, it is very
important to analyze how the vehicle, driver and environment
interact. In this regard, multimodal data acquisition platforms
play a crucial role in synchronously acquiring and recording
sensor information from all these modalities. For automotive
research purposes, it becomes very helpful to instrument
a particular vehicle with various sensors and recording
platforms. Generally termed as “Instrumented Vehicle” –
it provides reliable synchronized information to analyze
data and develop new algorithms and systems. One such
instrumented vehicle is from the UTDrive project [14], [15].

A. UTDrive Instrumented Vehicle

The UTDrive project was part of an international collabo-
ration for collecting large-scale vehicle corpora and carrying
out research on driver behavior and driving characteristics
[14], [15]. A 2006 Toyota RAV4 was instrumented (see Fig.
1) with various sensors such as:

• 2 cameras, one facing the driver, another facing the road.
• A microphone array and a close talk microphone to cap-

ture both driver and other in-vehicular speech activity.

Fig. 1. UTDrive instrumented vehicle with available sensors.

Fig. 2. Inside of the UTDrive instrumented vehicle along with the portable
device mounted on the windshield.

• Gas and brake pedal pressure sensors to capture the
pressure with which driver hits the gas/brake pedals.

• GPS for location information.
• Distance sensor to measure distance to the vehicle

ahead.
• CAN-bus signals are accessed and decoded to obtain

signals such as vehicle speed, steering wheel angle,
engine RPM, and brake/gas pedal pressure.

All these signals were synchronously recorded using a
Dewetron (DA 121) data acquisition unit. More details on
this instrumented vehicle can be found in [14], [15]. Over
100 drivers have driven the UTDrive vehicle on pre-defined
routes under real traffic conditions. Data collected from
different modalities and the research through the UTDrive
project have provided a good insight into various driver and
driving characteristics [4], [6]. However, instrumenting and
maintaining the vehicle requires technical skills, and is also
expensive.

B. UTDrive Portable Device

As a motivation to move from a fixed instrumented ve-
hicle, portable devices offer a feasible alternative. Similar
to the UTDrive instrumented vehicle, a typical off-the-shelf
portable device would have sensors such as:

• Cameras (generally front and back)
• Microphones
• GPS
• 3-axis accelerometer
• 3-axis gyroscope
• Digital compass (Magnetometer)
• Ambient light sensor
• Proximity sensor
The 3-axis accelerometer and gyroscope can be employed

to capture and analyze overall vehicle movements. Several
research efforts [7], [12], [13] have shown that IMUs are
useful in capturing vehicle movements. With these sensors
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contained within a portable device, it can effectively replicate
the role of an instrumented vehicle.

In order to investigate the effectiveness and accuracy of
the portable device platform in capturing vehicle movements,
an application was developed on a Samsung Galaxy TabTM

10.1 to record all available sensor information synchronously
along with audio and video. The tablet was mounted in the
instrumented UTDrive car as shown in Fig. 2. The developed
application has been implemented on Android platform.

C. Route and Data Description

To analyze, characterize and recognize different driving
maneuvers, the UTDrive instrumented car along with the
portable device is driven multiple times by multiple drivers.
To facilitate easy transcription and consistency in this study,
two fixed routes as seen in Fig. 3 are driven both in
clockwise and counterclockwise directions. The routes are
selected such that it includes different road speeds as well
as different traffic conditions. Each route takes approximately
7-9 minutes to complete.

The GPS on both devices (i.e., UTDrive and the portable
device) help mark boundaries for known maneuvers such as
turns, road curves, and stops. For lane change maneuvers,
2 independent transcribers visually look at the video and
label the lane change boundaries. In this study, the following
maneuvers are considered: Right Turn (RTR), Left Turn
(LTR), Right Lane Change (RLC), Left Lane Change (LLC),
Right Road Curve (RRC), Left Road Curve (LRC), Straight
(STR), and Stop (STP). Turns could occur at any angle (not
necessarily at 90 degrees), which are generally characterized
by intersections or sharp bends on the road. On the other
hand, road curves are generally smooth bends or transitions
on the road.

D. Sensors Used

As listed in Section II (A and B), synchronously recorded
signals from all modalities are stored. However, since this
study focuses on maneuver recognition using signals from
CAN-bus as well as sensor information from portable de-
vices, we only utilize the signals and sensors of interest.

Fig. 3. Two separate routes selected with turns, road curves, stops and
straight segments.
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Fig. 4. A comparison of vehicle speed obtained from GPS of portable
device and vehicle speed sensor from CAN-bus.

Video recordings are used for manual transcription of dif-
ferent maneuvers. Because GPS latitude and longitude are
adopted for transcription in addition to video, they are not
used for maneuver recognition.

As discussed earlier, only a limited set of CAN-bus signals
could be tapped out and decrypted from the OBD port.
Without the car manufacturer’s support, we have been able to
extract vehicle speed, steering wheel angle, engine RPM, and
gas/brake pedal pressure information from the OBD port. We
have already shown that these primary signals have sufficient
information about driver/driving conditions [4], [5].

In addition to the primary sensors available from the
portable device, a variety of useful information can be
extracted from sensor fusion. In total there are 8 vehicle
dynamics related sensors or sensor information which we
employ in our experiments:

• 3-axis accelerometer – measures the acceleration ap-
plied on the device (or in this case the vehicle). Here,
we are only interested in the lateral and longitudinal
acceleration.

• 3-axis gyroscope – measures the angular speed or ro-
tation around the device’s local axis. Turns and vehicle
swaying information can be computed using this sensor.

• GPS – along with latitude, longitude, it provides infor-
mation about the vehicle bearing and vehicle speed.

• 3-axis magnetometer – measures the ambient magnetic
field in each of the axes.

• 3-axis orientation – measures the orientation.
• 3-axis gravity – from which information regarding the

magnitude of gravity in each direction is extracted.
• 3-axis linear accelerometer – which provides informa-

tion similar to that provided by 3-axis accelerometer,
with the gravity component removed.

• 3-axis rotation vector – measures the orientation of the
device with respect to a fixed orientation.

All these sensors and derived sensor information are
captured at the fastest rate (approximately 50 Hz) and down
sampled to 1 Hz (via the standard procedure) to smooth out
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undesired noisy transient fluctuations which are mainly due
to vehicle and car mount vibrations. In this manner, abnor-
malities in the signal are filtered out and only information
pertaining to vehicle movements and maneuvers are retained.

Fig. 4 shows an example of the scaled and aligned vehicle
speed captured independently from the CAN-bus (red) and
the portable device (black). Since the GPS takes a while to
lock-on, the initial values might not match but there is a
high correlation between the two signals once the GPS data
is locked-on. A similar match was shown in [12] between
lateral accelerations captured from the CAN-bus and portable
device.

E. Features Used

There are 5 signals which we were able to extract from
the CAN-bus and 23 signals from the Portable device (7 ×
3-axis data + vehicle speed and bearing information from
GPS), making it a total of 28 signals which will be used
for the maneuver recognition task. Since it is an exporatory
analysis, rather than selecting only the relevant signals, all
available signals are utilized here, and after feature selection
we segregate only the most discriminative features and use
them for further processing.

Motivated by previous successful work in [16], [17],
an exhaustive list of statistical features is extracted from
these 28 signals. Mostly extracted from the temporal signal,
statistical features are straight forward to understand and
extract in real-time processing. Along with static features,
the dynamics (time derivative) of these signals often bear
useful information regarding the vehicle maneuvers. For
example, taking derivative of the longitudinal acceleration

TABLE I
FEATURES CONSIDERED AND THEIR DESCRIPTION

Feature Description

amp Difference between the maximum and mean
value of the signal

namp Difference between the mean value and
minimum of the signal

med Median of the signal

mean Mean of the signal

min Minimum value of the signal

max Maximum value of the signal

p2p Difference between the maximum and min-
imum value of the signal

std Standard deviation of the signal

var Variance of the signal

rms Root mean square value of the signal

s2e Amplitude of the difference between the
first and the last samples of the signal

lpE Variance of error in a 10th order linear
prediction (LP) analysis

ent Entropy of the signal

dcVal DC value of the signal

energy Energy of the signal

yields “vehicle jerk” which provides information about the
driver’s intention for any quick or evasive maneuver. A set
of 15 distinct features and their descriptions are listed in
Table 1. The first 10 features from amp to rms are extracted
from both static and dynamic signals and the last 5 features
are extracted only from static signals. Accordingly, overall
there are 25 features selected for each of the 28 signals
which sum up to 700 different features for the maneuver
recognition task. Out of these 700 features, 125 features are
from CAN-bus signals and the remaining 575 features are
from the portable device.

III. EXPERIMENTAL SETUP

Driving event or maneuver recognition forms one of the
key components in analyzing driving characteristics and
modeling driver’s behavior for developing active safety sys-
tems. In this study, 8 different maneuvers are considered
including RTR, LTR, RLC, LLC, RRC, LRC, STR and STP.
These maneuvers are executed with varying time durations,
ranging from 3-5 seconds for lane changes to 5-9 seconds
for turns. Stops are typically driver and traffic dependent and
can range from 5-15 seconds, whereas straight segments are
mainly road dependent and can range from 15-30 seconds
to 3 minutes. The durations noted here are based on the
samples collected for this study, but they can vary drastically
based on the geography as well as the time/date of driving
among other factors. In our dataset, there are no maneuvers
greater than 30 seconds and in case of straight segments,
if the maneuver exceeds 30 seconds it is treated as a new
straight segment. In our evaluations (including training and
test phases) there are 816 maneuvers including all the 8
different types. Specifically, there exist 84 RTR, 91 LTR,
103 RLC, 108 LLC, 67 RRC, 60 LRC, 236 STR and 67
STP maneuvers.

As mentioned, our goal is to evaluate the effectiveness of
sensor information extracted from the portable device in the
context of a driving maneuver recognition task. Performance
is compared against that obtained using available CAN-bus
data. We employ two distinct type of classifiers namely k–
nearest neighbor (k–NN) algorithm and support vector ma-
chines (SVM). The k–NN algorithm, which classifies objects
based on a majority vote of its closest training examples,
is used with k = 7. The SVM, which is a much more
sophisticated method than the k–NN, is a binary classifier
that makes its decision by constructing an optimal separating
hyperplane (OSH) that divides a d-dimensional real space
into two half spaces with the largest margin [18]. In order
to perform multi-class classification with the SVM, two
strategies are commonly adopted – one-versus-one and one-
versus-rest. In our experiments we use SVM along with a
Gaussian radial basis function (RBF) kernel and the one-
versus-rest strategy. Since we have used all the available
signals and sensor information from the two platforms to
form an exhaustive feature set (i.e., 125-dimensional for
CAN-bus, and 575-dimensional for the portable device), it
is desirable to reduce the dimensionality of features before
classification. Dimensionality reduction can be accomplished
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Fig. 5. Maneuver recognition accuracies using only features from CAN-bus
signals with the different classifiers and dimensionaly reduction methods.

through either feature transformation or feature selection. In
this study, the linear discriminant analysis (LDA) is used for
feature transformation, while the forward sequential feature
selection (SFS) is utilized for selecting the most influential
subset of the features. Forward SFS is a process in which
features are sequentially added to an empty candidate set
until the addition of further features does not decrease a pre-
defined criterion. Here, the mis-classification rate is adopted
as the criterion.

Finally, to ensure generalized experimental outcomes that
are not data/driver dependent, evaluations are carried out
using a 10-fold cross-validation scheme. Results are obtained
by averaging over 50 iterations of the cross-fold validation.

IV. RESULTS AND CONCLUSIONS

Comprehensive results of the maneuver recognition task
are shown in Fig. 5 and 6 for CAN-bus and portable device
features, respectively. The highest recognition performance is
obtained with all the portable device features and the SVM
classifier which yield a high accuracy of 89% (compared
to 68% accuracy obtained with all the CAN-bus features).
This supports our hypothesis that portable devices could
be effectively used for the maneuver recognition. Since
extracting and utilizing all feature may not be practical in
real-time processing, we employ dimensionality reduction
techniques. First, the LDA is used to reduce the dimen-
sionality to 7 (number of classes minus 1). It is observed
that the recognition performance with the CAN-bus features
is improved significantly after the dimensionality reduction,
and the k–NN classifier yields a high accuracy of 74%. For
the same setup, the portable device features maintained the
accuracy at 89%.

The results from the dimensionality reduction show that
there is redundancy in the original feature set. It is very
useful to identify an influential subset in the features which
might be sufficient for maneuver recognition. This is accom-
plished via the sequential features selection approach which
results in a 10-dimensional feature subset for the CAN-bus
and a 16-dimensional feature subset for the portable device.
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Fig. 6. Maneuver recognition accuracies using only features from the
portable device sensor information with the two classifiers.

It can be seen from Fig. 5 and 6 that even with a small set of
influential features a comparable performance is achievable.
The 10-dimensional feature subset of the CAN-bus includes
4 feature from steering wheel angle (median, mean, peak-to-
peak and entropy), 2 from gas pedal pressure (mean and
rms), 2 from brake pedal pressure (mean and median of
derivative), 1 from vehicle speed (LP error), and 1 from
engine RPM (peak-to-peak of engine rpm derivative).The 16-
dimensional features subset of the portable device contains
5 features from accelerometer (amp, median, and s2e of x-
axis, rms of y-axis, and median of z-axis derivative), 4 from
linear accelerometer (median and rms of x-axis, mean of its
derivative, and std of y-axis), 3 from pitch-gyroscope (mean,
peak-to-peak, and entropy), 3 from speed-GPS (derivative
of speed, std, and LP error), and 1 from x-axis of gravity
(entropy). As can be noted from both set of features selected,
they are dependent not only on how the vehicle moves, but
also on how the driver maneuvers the vehicle.

Fig. 7 compares the maneuver recognition accuracies of
the best configuration for the portable device and CAN-
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Fig. 7. A comparison of maneuver recognition accuracies from the best
configuration obtained from Portable device and CAN-bus signals.
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features from the portable device with the SVM classifier.

bus signals. It can be clearly seen that higher accuracies
are obtained with the portable device sensor information
compared to the CAN-bus signals.

Fig. 8 and 9 illustrate confusion matrices for the same
configuration in Fig. 7. It is evident that most of the
confusion lies in detecting lane changes, however, they are
still more accurately detected using the portable device
data. During RLC, many drivers maintain their speed and
maneuver smoothly from a fast to a slower lane, thus making
it more difficult to distinguish this maneuver from STR or
LLC. LLCs are relatively easier to distinguish as drivers tend
to increase their speed and maneuver swiftly from a slower
to a fast lane.

As shown, the portable device proves useful in driving
maneuver recognition. This opens new avenues for replacing
expensive instrumented vehicles with off-the-shelf portable
devices. It also obviates the need to be constrained to depend
on car manufacturers for the proprietary CAN-bus informa-
tion. It is worthwhile remarking here that this study does not
de-emphasize the effectiveness of CAN-bus signals or makes
any effort to replace the robust CAN-bus which serves as the
backbone for most of the vehicular communication. It only

shows that alternative platforms can be used towards driver
assistance systems.

Another significant contribution of this study is that, from
a exhaustive statistical feature set a much smaller set of
discriminative features are selected which can be used for
robust and effective maneuver recognition.
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