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Abstract

This paper proposes an effective feature compensation scheme
to address severely adverse environments for robust speech
recognition, where background noise and channel distortion
are simultaneously involved. An iterative channel estimation
method is integrated into the framework of our Parallel Com-
bined Gaussian Mixture Model (PCGMM) based feature com-
pensation algorithm [1]. A new speech corpus is generated
which reflects both additive and convolutional noise corrup-
tion. The channel distortion effects are obtained from the
NTIMIT and CTIMIT corpora. Evaluation of objective speech
quality measures including STNR, PESQ, and speech recogni-
tion shows that the generated speech corpus represents highly
challenging acoustic conditions for speech recognition. Per-
formance evaluation of the proposed system over the obtained
speech corpus demonstrates that the proposed feature compen-
sation scheme is significantly effective at improving speech
recognition performance with presence of both background
noise and channel distortion, comparing to the conventional
methods including the ETSI AFE.
Index Terms: channel estimation, feature compensation, cor-
pus generation, PCGMM, robust speech recognition.

1. Introduction
Mismatch between training and operating conditions of an ac-
tual speech recognition system is one of the primary factors
severely degrade recognition accuracy. Background noise, mi-
crophone mismatch, communication channel, and speaker vari-
ability are major sources of such mismatch. Recently, as mo-
bile device such as a smart phone is getting highly popular,
speech recognition technology via the mobile system is becom-
ing more challenging, since a range of background noise and
time-varying channel effects make the recognition condition
more difficult, which can be represented as Fig. 1. This paper
focuses on an effective feature compensation scheme for robust
speech recognition in a severely adverse environment where ad-
ditive background noise and channel distortion are simultane-
ously present.

To minimize the acoustic mismatch, extensive research has
been conducted in recent decades, which includes many types
of speech/feature enhancement methods such as Spectral Sub-
traction, Cepstral Mean Normalization (CMN), and variety of
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Figure 1: Speech corruption model with background noise and
channel distortion.

feature compensation schemes. Various model adaptation tech-
niques have been successfully employed such as the Maximum
A Posteriori (MAP), Maximum Likelihood Linear Regression
(MLLR), and Parallel Model Combination (PMC) [1]-[4]. Re-
cently, missing-feature methods have shown promising results.

As the real-life condition for speech recognition gets more
adverse, a standard speech corpus for developing robust speech
recognition algorithm is highly in demand, which simultane-
ously reflects background noise and channel distortion. Aurora
2.0 database [5] includes a part which contains two types of
communication channel effects (i.e., G.712 and MIRS) together
with additive background noise, however its channel distortions
are not very severe, therefore their effects are dominated by the
additive background noise even at a high SNR1. The NTIMIT,
CTIMIT, and WTIMIT corpora represent highly distorted chan-
nel effects which can be observed in real-life communication
conditions, but they do not include various types of additive
background noise [6]-[8].

In this paper, we develop a speech corpus which simulta-
neously reflects the additive background noise and channel dis-
tortions. The channel effects are estimated from the NTIMIT
and CTIMIT corpora, and they are again applied to the TIMIT
corpus which is corrupted by background noise. We also pro-
pose a feature compensation method to effectively address both
background noise and channel distortion for improving speech
recognition performance. The proposed system is based on
the Parallel Combined Gaussian Mixture Model (PCGMM)
method [1], where noise-corrupted speech model is obtained
by a model combination method using clean speech and noise
models. In this study, an iterative channel estimation method
is proposed and integrated into the framework of the PCGMM-
based scheme. The proposed system is evaluated over the gen-

1Our preliminary experiment shows recognition performance over
clean speech only with the channel effects of AURORA 2.0 (without
background noise) is comparable to the clean speech condition.
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erated speech corpus.

2. Corpus Generation
This section presents a procedure of corpus generation em-
ployed in this study. The test part of the TIMIT speech corpus is
used, which consists of 1680 utterances for 168 different speak-
ers. In order to obtain channel distortion effects, the NTIMIT
and CTIMIT corpora are used, where reasonably severe con-
volutional noise components are included. The speech samples
are down-sampled to 8 kHz. To implement the noise corruption
model as shown in Fig. 1, first the clean TIMIT speech sam-
ples are corrupted by adding background noise samples. In this
study, we use car noise and speech babble noise samples which
are obtained from AURORA 2.0 database [5]. The location of
the noise segment with the same length as the target speech sam-
ple is randomly determined from the original noise sample, and
then the obtained noise segment is added to the speech sample
at 10 dB SNR.

To apply the channel distortion effect to the noise-added
speech sample, the channel effect is estimated from the channel-
distorted speech sample from the NTIMIT and CTIMIT cor-
pora [7][8]. The target channel-distorted speech sample and
its corresponding clean speech sample as a reference need to
be aligned in time domain, since the length of speech samples
in the NTIMIT and CTIMIT are not identical to the original
TIMIT clean speech samples. A simple correlation method
was employed in this study. Using the time-aligned channel-
distorted and clean speech samples, a transfer function of the
channel effect is estimated at every frame. The frame (i.e., win-
dow) and overlap sizes are 32 msec (256 samples) and 16 msec
respectively. In this study, the transfer function is estimated
in the frequency domain. We use a smoothed version of the
channel transfer function over the past 15 frames to obtain a
more stable function value. To minimize an over-estimate of
the channel effect during the non-speech duration, the transfer
function is estimated only from the speech segments. The ob-
tained channel function is again applied to the corresponding
noise-added speech sample. An average of the obtained trans-
fer functions over the entire speech segments is applied during
the non-speech segments of the noise-added speech sample.

Fig. 2 presents examples of (a) clean, (b) corrupted only by
additive car noise (TIMIT + car noise), and corrupted speech
by both additive and convolutional noise ((c) NTIMIT + car
noise and (d) CTIMIT + car noise). The speech samples (c)
and (d) were obtained by the corpus generation procedure pre-
sented in this section. It can be seen that the speech signals (in-
cluding background noise segments) are severely degraded by
applying the channel effects to the speech corrupted by additive
noise in cases of (c) NTIMIT+NOISE and (d) CTIMIT+NOISE.
The objective speech quality measures including Signal-to-
Noise-Ratio (SNR) and Perceptual Evaluation of Speech Qual-
ity (PESQ) are evaluated over the obtained speech corpora, and
the details will be discussed in Sec. 4.

3. PCGMM-Based Feature Compensation
Integrated with Channel Estimation

As presented in Fig. 1, input speech signal is assumed to be
characterized in time domain as

y(t) = (x(t) + n(t)) ∗ h(t) = xh(t) + nh(t). (1)

In this study, an iterative channel estimation method is in-
tegrated into our previously proposed PCGMM-based feature
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Figure 2: Example of speech sample obtained by corpus gener-
ation: (a) clean condition, (b) corrupted only by car noise, and
(c) & (d) corrupted both by car noise and channel distortion.

compensation scheme to effectively address the background
noise n(t) and channel distortion h(t). The following sections
present the complete feature compensation algorithm including
the proposed channel estimation method. Now all signals repre-
sent the feature vectors of Mel-Frequency Cepstral Coefficients
(MFCC, c0-c12).

3.1. Step 1: Noise Model Estimation

As a first step, the model parameters of the channel-distorted
noise signal nh is estimated as a single Gaussian pdf
{μnh

,Σnh
} in the cepstral domain. In this study, a cluster-

based speech/non-speech segment detection method is em-
ployed, where input feature vectors are clustered to the two
centroids by a simple binary splitting algorithm. Among the
obtained two centroids, the one who has a lower value in the
0th cepstral component (i.e., lower energy) is decided as a cen-
trod for the non-speech segments.

3.2. Step 2: Channel-Distored Speech Estimation

In this step, channel-distored speech signal xh is estimated by
the PCGMM-based feature compensation scheme [1]. Given
an estimated channel distortion vector h, the pdf of xh can be
represented as,

{ωk, μxh,k,Σxh,k} = {ωk, μx,k + h,Σx,k}, (2)

where {ωk, μx,k,Σx,k} is a set of the GMM parameters for
clean speech x obtained by training over clean speech data.
Here, the channel component h is assumed be additive to clean
speech in the cepstral domain, so the mean parameter of the
clean speech model is transformed by a bias term.

From the additivity of xh and nh in the waveform as given
in Eq. (1), the model parameters of the noise-corrupted speech
y are obtained by the model combination technique as follows:

{ωk, μy,k,Σy,k} = F [{ωk, μxh,k,Σxh,k}, {μnh
,Σnh

}],
(3)

where F [·] denotes a function representing the model combina-
tion employed in the PCGMM method, and the same weight
parameter ωk is just used as in the clean speech model. In
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this study, the log-normal approximation method is used for the
model combination technique [1].

A constant bias transformation of the mean parameters of
the channel-distorted speech model is assumed in the cepstral
domain, which is the assumption generally taken by other data-
driven methods [9] as follows,

μy,k = μxh,k + rh,k. (4)

The bias term rh,k is used for reconstruction of the channel-
distorted clean speech. The Minimum Mean Squared Error
(MMSE) estimation equation for the channel-distorted speech
estimation is approximated as follows [1][9],

x̃h(t) =

∫
Xh

xhp(xh|y(t))dxh
∼= y(t)−

K∑
k=1

rh,k p(k|y(t)).

(5)

3.3. Step 3: Channel Distortion Estimation

The channel distortion vector h is estimated by employing the
Expectation Maximization (EM) algorithm over the obtained
xh(t) as a similar manner suggested in [9]. The auxiliary func-
tion for the EM algorithm can be written as follows:

Q(h, h̃) = E{L(xh, s|h̃)|xh,h}

=
T∑

t=1

K∑
k=1

p(xh(t), k|h)

p(xh(t)|h)
log(p(xh(t), k|h̃)).(6)

Here, (xh, s) constitutes “complete” data containing source in-
formation, that is for which Gaussian component generates xh.
To find h̃ that maximizes the auxiliary function, h̃ satisfying
∇h̃Q(h, h̃) = 0 is developed, which leads to the following
solution:

h̃ =

∑T

t=1

∑K

k=1
P (k|xh(t),h)Σ−1

x,k(xh(t)− μx,k)∑T

t=1

∑K

k=1
P (k|xh(t),h)Σ−1

x,k

, (7)

where μx,k andΣx,k are the model parameters of clean speech
x. The channel distortion vector is iteratively estimated through
Steps 2 and 3, with an initial channel vector h0. The iteration
stops when the likelihood score

∑T

t=1
p(xh(t)|h̃) does not in-

crease. In this study, zero vector is used for h0, and the max-
imum number of iterations is set to 10. The final estimate of
the channel distortion vector is used for the clean speech recon-
struction in the next step.

3.4. Step 4: Clean Speech Reconstruction

In this final step, in a similar manner as Step 2, the clean speech
is reconstructed by the PCGMM method. The model parame-
ters for noise-corrupted speech y are given by Eq. (3). Here
another approximation of bias transformation in the mean pa-
rameters of the clean speech model is formulated in the cepstral
domain as follows,

μy,k = μx,k + rk. (8)

The clean speech is reconstructed by the MMSE estimator as
follows,

x̃(t) =

∫
X

xp(x|y(t))dx ∼= y(t)−
K∑

k=1

rk p(k|y(t)). (9)

Fig. 3 illustrates the block diagram of the proposed PCGMM-
based feature compensation algorithm integrated with the itera-
tive channel estimation method.

Figure 3: Block diagram of the PCGMM-based feature compen-
sation method integrated with iterative channel estimation.

4. Experimental Results
4.1. Corpus Evaluation

To observe the degree of the noise/channel corruption of the
speech corpus generated in this study, we evaluated several ob-
jective speech quality measures including SNR, PESQ [13], and
speech recognition accuracy. The SNR was obtained using the
NIST Speech Quality Assurance tool (i.e., the STNR estimator)
[10]. Here the TIMIT+NOISE corpus represents a condition of
additive background noise such as car and speech babble noise.
The NTIMIT+NOISE and CTIMIT+NOISE corpora were ob-
tained by the corpus generation procedure described in Sec. 2.
They were generated by applying the channel distortion effects
estimated from the NTIMIT and CTIMIT speech samples to
the TIMIT+NOISE corpus respectively, formulating a presence
of both additive and convolutional noise components, which is
our interest in this study. From Tables 1 and 2, we can see
that the STNR consistently decreases from clean condition to
NTIMIT+NOISE and CTIMIT+NOISE. The PESQ also shows
a similar trend to the STNR across all corpora.

Word Error Rate (WER) was examined as the speech recog-
nition performance over each corpus. We employed SPHINX3
[11] as the Hidden Markov Model (HMM) based speech rec-
ognizer to obtain recognition performance. Each HMM repre-
sents a tri-phone which consists of 3 states with an 8-component
GMM per state, which is tied with 1138 states. The task has
6233 words as the vocabulary, and the trigram language model
is adapted on the TIMIT database using a Broadcast News lan-
guage model as an initial model. A conventional MFCC feature
front-end is employed in the experiment, which was suggested
by the European Telecommunication Standards Institute (ETSI)
[12]. An analysis window of 25 msec in duration is used with
a 10 msec skip rate for 8-kHz speech data. The computed 23
Mel-filterbank outputs are transformed to 13 cepstrum coeffi-
cients including c0 (i.e., c0-c12).

Comparing the NTIMIT+NOISE to the TIMIT+NOISE,
although the difference in the STNR is not large, the
NTIMIT+NOISE shows significantly lower and higher values
in PESQ and WER respectively. The CTIMIT+NOISE presents
the lowest STNR and PESQ, and the highest WERs, which rep-
resent the most challenging condition for speech recognition.
These results prove that the channel distortions applied to the
TIMIT+NOISE bring significant corruption in signals, provid-
ing severely adverse environments for speech recognition.
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Table 1: STNR (dB), PESQ (-0.5 to 4.5 MOS scale), and WER
(%) over clean TIMIT, NTIMIT, CTIMIT, and TIMIT+NOISE
corpora.

TIMIT NTIMIT CTIMIT TIMIT+NOISE
Clean Car Babble

STNR 54.40 35.79 24.14 16.90 17.58
PESQ 4.50 2.19 1.74 2.09 1.99
WER 8.05 34.33 76.19 62.36 51.34

Table 2: STNR (dB), PESQ (-0.5 to 4.5 MOS scale), and WER
(%) over NTIMIT+NOISE and CTIMIT+NOISE corpora.

NTIMIT+NOISE CTIMIT+NOISE
Car Babble Car Babble

STNR 14.95 16.42 11.65 9.96
PESQ 1.69 1.64 1.55 1.52
WER 93.61 88.17 97.76 96.16

4.2. Performance Evaluation of the Proposed Feature Com-
pensation Method

Performance of the proposed system (PCGMM+CH) was eval-
uated with comparison to several existing pre-processing algo-
rithms in terms of speech recognition performance. Spectral
Subtraction (SS) [14] combined with Cepstral Mean Normaliza-
tion (CMN) was selected as one of the conventional algorithms.
They represent some of the most commonly used techniques for
additive noise suppression and removal of channel distortion re-
spectively. We also evaluated the Vector Taylor Series (VTS) al-
gorithm for performance comparison [9]. The Advanced Front-
End (AFE) algorithm developed by ETSI was also evaluated as
one of the state-of-the-art methods, which contains an iterative
Wiener filter and blind equalization [15].

Table 3 shows speech recognition performance over the
NTIMIT+NOISE and CTIMIT+NOISE corpora, using the pro-
posed feature compensation method and existing pre-processing
algorithms. The evaluation results over the NTIMIT+NOISE
corpus indicate that the proposed PCGMM+CH shows slightly
better performance in the average WER compared to the ETSI
AFE. By combining CMN, the proposed method significantly
outperforms the AFE2. The results for the CTIMIT+NOISE
show that the WERs are around 60 % even for the ETSI AFE
algorithm which is well known to be highly effective in noisy
environment. This confirms that the CTIMIT+NOISE corpus
has extremely challenging acoustic conditions for speech recog-
nition. The proposed PCGMM+CH and its combination with
CMN both significantly outperform the ETSI AFEwith the rela-
tive improvements +8.11 % and +11.81 % respectively. The ex-
perimental results here demonstrate that the proposed PCGMM-
based feature compensation method with channel estimation is
highly effective in improving speech recognition performance
in the severe adverse environments with the presence of both
additive and convolutional noise components.

5. Conclusions
In this study, an effective feature compensation scheme was
proposed to address severely adverse environment for speech
recognition where background noise and channel distortion are
simultaneously involved. The proposed scheme integrated an
iterative channel estimation method into the framework of our
PCGMM-based feature compensation algorithm. A new speech
corpus was generated which reflects both additive and convo-

2ETSI AFE has shown the best performance when solely used with-
out CMN over all corpora in this study.

Table 3: Recognition performance in WER (%) of the
proposed system (PCGMM+CH) for NTIMIT+NOISE and
CTIMIT+NOISE corpora with relative improvement to AFE.

NTIMIT + NOISE Car Babble Avg. (Relative)
SS+CMN 56.28 54.20 55.24
VTS 56.28 49.21 52.70
ETSI AFE 40.46 43.37 41.92
PCGMM+CH 43.70 38.59 41.15 (+1.84)
PCGMM+CH+CMN 39.79 35.23 37.51 (+10.51)
CTIMIT + NOISE Car Babble Avg. (Relative)
SS+CMN 71.84 68.29 70.07
VTS 72.65 66.74 69.70
ETSI AFE 59.27 59.54 59.41
PCGMM+CH 57.52 51.66 54.59 (+8.11)
PCGMM+CH+CMN 55.16 49.62 52.39 (+11.81)

lutional noise corruption. The channel distortion effects were
obtained from the NTIMIT and CTIMIT corpora. Evaluation of
objective measures including STNR, PESQ, and speech recog-
nition showed that generated speech corpus includes highly
challenging acoustic condition for speech recognition. Per-
formance evaluation of the proposed system over the obtained
speech corpus demonstrated that the proposed feature compen-
sation scheme is significantly effective at improving speech
recognition performance with presence of both background
noise and channel distortion, comparing to the conventional
methods including the ETSI AFE.
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