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Abstract 
In this study, a new algorithm for automatic accent 

evaluation of native and non-native speakers is presented. The 
proposed system consists of two main steps: alignment and 
scoring.  At the alignment step, the speech utterance is 
processed using a Weighted Finite State Transducer (WFST) 
based technique to automatically estimate the pronunciation 
errors. Subsequently, in the scoring step a Maximum Entropy 
(ME) based technique is employed to assign perceptually 
motivated scores to pronunciation errors. The combination of 
the two steps yields an approach that measures accent based on 
perceptual impact of pronunciation errors, and is termed as the 
Perceptual WFST (P-WFST). The P-WFST is evaluated on 
American English (AE) spoken by native and non-native 
(native speakers of Mandarin-Chinese) speakers from the CU-
Accent corpus. The proposed P-WFST algorithm shows higher 
and more consistent correlation with human evaluated accent 
scores, when compared to the Goodness Of Pronunciation 
(GOP) algorithm.   

Index Terms: automatic accent assessment, pronunciation 
scoring, Finite State Transducers, Maximum Entropy 

1. Introduction 
Automatic pronunciation assessment systems has received 

a lot of attention where algorithm based on Hidden Markov 
Model (HMM) log-likelihood scores, segment classification 
error scores, segment duration scores, syllabic timing scores 
[1], [2], the linear and non-linear combination of the 
confidence scores [3], and the GOP (Goodness Of 
Pronunciation) measure [4] have been proposed.  

1In this study, we propose a new approach towards 
modeling accent by splitting the assessment into 2 steps: 
alignment and scoring.   In term of phones sequences, 
accented pronunciation can differ from native canonical 
pronunciation, leading to 3 different types of pronunciation 
errors: substitution, deletion, and insertion of phones.  
Traditional assessment algorithms such as GOP focus only on 
measuring the impact of substitution, while ignoring deletion 
and insertion errors.  In order to address this issue, the 
proposed system employs Weighted Finite State Transducers 
(WFST) to capture phone substitution, deletion, and insertion 
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by aligning the decoded and canonical phone sequences.    
Furthermore, different phone substitutions, deletions, and 
insertions can be expected to have a different impact on 
perception of accent.  Traditional assessment algorithms such 
as GOP do not employ perception in scoring.  In this study, we 
propose a Maximum Entropy (ME) based technique that can 
automatically learn the penalty associated with different types 
of pronunciation errors from human evaluation of native and 
non-native accents.  In this manner, the proposed assessment 
strategy accounts for substitution, deletion, and insertion using 
the alignment process and incorporate perception using the 
scoring method.  The combination of the alignment and 
scoring techniques is termed as the Perceptual-WFST (P-
WFST). 

     The proposed system is evaluated on American English 
(AE) spoken by Native AE (N-AE) speakers as well as Native 
Mandarin Chinese (N-MC) speakers from CU-Accent corpus 
[7].  When evaluating a combination of N-AE and N-MC 
speaker data, the proposed P-WFST technique matches GOP 
performance in terms of correlation with human scores.  
However, P-WFST shows a higher degree of correlation with 
human scores than GOP when evaluating on N-MC speakers 
alone (14.8% higher than GOP).  Additionally, speaker level 
correlation with varying number of words is investigated to 
analyze the performance of machine as a function of number 
of words used for assessment.    Finally, we also conduct 
word-dependent correlation experiments to analyze which 
words are best suited for accent analysis. 

2. Proposed Accent Assessment System 
The P-WFST accent assessment technique is shown in Fig. 

1.  As shown in the figure, the technique first decodes the 
acoustic signal using a standard MFCC-based ASR decoder 
that utilizes monophone HMMs.  Here, the decoding graph is 
generated dynamically from the canonical phone sequence 
with an intention of capturing the variability in pronunciation 
(or pronunciation errors).  As shown in Fig.1, this is 
accomplished by constructing the decoding graph in a manner 
that presents most likely phone-level substitution, deletion, 
and insertion as alternate hypothesis to the decoder.  Certain 
substitutions are highly unlikely and therefore not allowed by 
the decoding graphs, e.g. as (/s/ /aa/), (/d/ /ah/).  
Additionally, the phone mappings can also be handcrafted by 
using the knowledge of articulator traits of the target non-
native speaker group, e.g. N-MC:  (/l/ /r/).  In this study, a 
lookup table is employed for this purpose and a few example 
entries are shown in Table 1. 
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Figure 1: Proposed automatic accent assessment method uses (Weighted Finite State Transducers) WFST based technique (A) to 
automatically detect pronunciation errors and (Maximum Entropy) ME based perceptual (B) scoring technique to assign penalties 
to the pronunciation errors. 

In the proposed technique, Viterbi algorithm is employed 
for decoding and choosing the most likely pronunciation path.  
As shown in Fig.1, the decoded and canonical phones 
sequences are then aligned using WFST.  The pronunciation 
errors obtained from this alignment are used as input features 
to ME model (MEM) which utilizes its features’ weights to 
assign penalties to the pronunciation errors.  Fig.1 shows the 
areas of pronunciation with the higher penalties assigned by 
the proposed system.  Finally, MEM also estimates the most 
likely word-level accent score based on these ME weights. 

Table 1. Example of Phone Mapping  Strategy

Phones Phone Mappings 

/ch/ /ch/ /jh/ /zh/ sh/ /z/ /s/
/n/ /n/ /ng/ /m/ 
/ey/ /ey/ /ae/ /ay/ /oy/ /eh/ /ah/ 

2.1. WFST Alignment System 

Transduction in the WFST model represents all possible 
alignments between decoded and canonical phones sequences.    
In this study, 2 separate WFST alignment models are 
constructed for native and non-native speakers.  The input and 
output to the WFST alignment models are the decoded phone 
(qd) and the canonical phone (qc), respectively.  The WFST 
weights of (qd, qc) can be interpreted as the conditional 
probability of canonical phone given decoded phone, P (qc|qd).   

2.1.1. EM Weight Training for WFST 

Forward-Backward Expected Maximization (FB-EM) 
algorithm [8] is used to train the weights of the WFST.  An 
initial WFST framework is constructed in such a way that it 
covers all possible phones mappings.  Let TA,B be the WFST 
alignment model which is trained using the FB-EM algorithm 
whose initial and final states are the same, and (Ai, Bi) be the 
pair of accented and canonical phones sequences respectively.   
For a given sequence pair (Ai, Bi), multiple paths through TA,B
are possible.  TA,B’s weights are initialized such that all the 
phones that follows phone mapping strategy have a value of 1, 
otherwise the weights are floored to a significantly small value 
close to 0.  

The FB-EM algorithm consists of 2 stages: expectation 
step and maximization step.  In the expectation step, for each 

sequence pair (Ai, Bi) in the training corpus, the weight for 
each phone mapping is computed as follows: 
1) Compute all possible alignments of (Ai, Bi) by performing 

compositions,  .1,, ≥= iiBAii MBTAM ��

2) Normalize the weights of all paths/alignments so that they 
sum up to 1, where the probability of a path is defined as,  

  ,)|()( ∏=
k dkcki qqM PP                          (1) 

where k = # of phones error mappings in Mi, i � 1.  The 
new updated P (Mi) can be calculated as, 
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3) For each (qd, qc), count instances of all error mappings as 
observed in all alignments Mi of all pairs of sequences (Ai, 
Bi). Each Mi contributes its weight to the corresponding 
instances of (qd, qc) in that alignment.   

,)()|( �=
i iMidkck MNqq PP                         (3) 

where i � 1, and NMi is the number of occurrences of a 
particular P (qck|qdk) in alignment Mi, this is to be done for all 
pairs of sequences (Ai, Bi).  Probability P(qck|qdk) is 
subsequently normalized.   

In the maximization step, the alignment scores are re-
computed for all pairs of sequences (Ai, Bi) from the product of 
the updated weights P(qck|qdk) corresponding to each 
alignment and normalize them such that the total probability of 
all paths sum up to 1.  The training iteratively uses Eqs. (1), 
(2), and (3) until the weights converge.  At termination, the 
WFST weights capture the frequency of pronunciation error 
mappings at phone level.  

2.1.2. Alignment of Decoded-Canonical Phone 
Sequences 

Consider a cascade of FSTs Mi = TA � TA,B � TB, where TA
and TB are the FST of the decoded phones sequence and 
canonical phones sequence respectively, whose edges have the 
same input-output labels, then Mi represents all the possible 
alignments between decoded phones sequence and canonical 
phones sequence.  The most likely alignment can be found as, 
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),(maxarg* iMi MM P=                              (4)                         

and by combining Eq. (1) and (4), we get 

∏=
k dkckMi qqM )|(maxarg* P .          (5)                                

The alignment between decoded and canonical phones 
sequences consists of the sequence of input-output labels of 
the WFST resulting from Eq. (5).  This alignment captures 
error mappings at phone levels by exposing substitutions      
(qdk ,qck), deletions (qdk = *e*), and insertions (qck = *e*), 
where *e* represents empty phoneme.  For example, the 
optimal alignment of “target” is shown in Fig 1 as the output 
from composition, TA � TA,B �TB. 

2.2. ME-Based Perceptual Scoring System 

2.2.1. ME Features Construction and Feature Pruning

In this study, the features for the proposed MEM 
(Maximum Entropy Model) are pronunciation errors, i.e., 
substitution (qdk ,qck), deletion (qdk = *e*), and insertion (qck = 
*e*).  The total number of features acquired for AE phones 
used in MEM training is 98.  This number is reduced to 64 
after eliminating the redundancies of non-error pronunciation 
features to a single feature through feature pruning strategy, 
e.g., features (aa:aa), (t:t), (d:d), (f:f), etc. are all mapped to 
feature (X:X). 

2.2.2. ME Perceptual Modeling for Scoring 

The ME modeling technique is used to learn the perceptual 
impact of pronunciation errors.  Particularly, we wish to learn 
the conditional probability P(S | E) given by,    
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where S is the accent score, E are the pronunciation errors, 
l is the total # of all possible pronunciation errors at phone 
level and Z is the normalization factor.  In order to learn the 
perceptual impact of different pronunciation errors, a listener 
evaluation of native/non-native speakers accents is conducted 
to collect ground truth.  The human accent scores are 
quantized to nearest discrete score, and then the ME model is 
trained to predict human scores.  In this manner, the ME 
features’ weights iλ  capture the impact of perception on 
pronunciation errors after training.  In Fig. 1, the output of the 
ME–Based Perceptual Scoring System shows the 
pronunciation errors features with its corresponding weights or 
penalties.     

3. Experiments  
3.1. Evaluation Corpus 

The experimental evaluations presented in this section use the 
data from Native American English (N-AE) and Native 
Mandarin Chinese (N-MC) speakers in the CU-Accent 
Corpus.  For training the proposed WFST alignment models, 
we used 24 N-MC and 55 N-AE speakers.  The testing data 
employed for evaluation of P-WFST system, GOP, and 
listener evaluation consists of 13 N-MC and 5 N-AE speakers.   

3.2. Listener Evaluation 

For the listener evaluation, 50 N-AE listeners rated the 
accent scores of words in testing set.  A total of 414 speech 
tokens were presented to 50 listeners.  The procedure followed 
for the listener evaluation was similar to [6].  We used data 
from 40 N-AE listeners to train the MEM for our proposed 
scoring system, and data from the remaining 10 N-AE listeners 
as evaluation.  We then computed the inter-rater correlations at 
speaker and word levels for the 10 N-AE listeners by 
following the method in [2].  These average inter-rater 
correlations suggest an upper bound on the level of expected 
correlation between human and automatic system scores.   

3.3. System Training 

In order to build the WFST alignment models, the decoded 
and canonical phones sequences of each N-AE and N-MC 
training data set are prepared from 12,364 and 13,654 speech 
tokens respectively (as explained in Sec. 2).  The MEM is 
trained on listener evaluation data collected from 40 N-AE 
listeners.  Here, the 40 N-AE listeners evaluated 414 speech 
tokens.  In this study, we use the Carmel Toolkit [5] to 
implement FB-EM training on WFST and the composition 
method for alignments between decoded and canonical phones 
sequences, and Maxent Toolkit [9] to train the perceptual 
MEM from native perceptual information. After the models 
are obtained, the testing set is evaluated using Eq. 6 to obtain 
the word level accent scores.     

4. Experiments and Discussions 
The average correlation between human and machine accent 
scores is shown in Table 2.  For comparison, the average inter-
rater correlation is also shown.  Inter-rater correlation is 
defined as the correlation of a rater’s scores with the average 
scores of the rest of the listener group [2].  In order to measure 
the effectiveness of the GOP and P-WFST algorithms in 
measuring accent, two data sets are created and the 
correlations for the data sets are computed separately.  One set 
(Set A) consists of N-AE and N-MC speakers while the other 
set (Set B) consists of N-MC only.  The average inter-rater 
correlations at word and speaker levels for Set A are 0.73 and 
0.95 respectively.  From Table 2, it is observed that the 
proposed P-WFST system reaches a high speaker level 
correlation of 0.89, while attaining a word level correlation of 
0.34 compared to GOP on Set A (0.89 for speaker and 0.47 for 
word).  In Set B, the average inter-rater correlations at word 
and speaker levels are 0.6 and 0.81 respectively, and proposed 
P-WFST system attains higher correlation of 0.31 (word level) 
and 0.86 (speaker level) which outperforms the GOP’s word 
and speaker level correlation at 0.27 and 0.75 respectively.  At 
both speaker and word level, P-WFST’s performance is 14.8% 
better than GOP’s.  The improved performance of P-WFST on 
Set B is particularly notable since this set consists of non-
native speakers only.  The increased agreement between P-
WFST and human raters shows that P-WFST can identify 
different proficiency groups within non-native speakers more 
effectively. Hence, the P-WFST can be a more reliable and 
accurate measurement of accent.   

The next experiment investigates the relationship between 
number of words used to compute accent scores and the 
speaker level correlation performance of P-WFST and GOP. 
On Set A, we observe from Fig. 2 that by averaging accent 
scores of 4 words only, P-WST reaches higher correlation of 
0.89 compared to GOP (0.87).  Additionally, as the number of 
words increase, the algorithm performance for P-WFST and 
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GOP increases.  On Set B, the P-WFST system reaches a 
higher correlation of 0.75 compared to that of GOP’s (0.69) by 
using accent scores from 4 words.  As seen in Set A, P-
WFST’s correlation performance increases with increase in 
number of words used.  However, the GOP performance 
fluctuates as the number of words increase.  It is observed that 
the P-WFST achieves high performance with little data (7-8 
words are sufficient to provide accurate measurements).  We 
believe that this stems from the unique approach that P-WFST 
applies to accent measurement, i.e., penalty assignment to 
pronunciation errors. 

Finally, in the last experiment, word-dependent 
correlations are assessed for machines and human scores on 
Set A.  From Fig. 3, we observe that the words target, 
communication, and boy exhibit high agreement for both 
machines and human, and therefore are the most suitable for 
accent assessment.  On the other hand, the words catch and 
hear possess low correlation which reflects on both human 
and machine’s inability to assess accent using these two 
words.   

Table 2. Correlation between human and machine as well 
as human and human (Inter-rater) accent scores, Set A 
consists of N-AE and N-MC data and Set B consists of N-
MC data only. 

Algorithm Correlation Coefficient 
Word-Level Speaker-Level 

Set A Set B Set A Set B 

Inter-rater 0.73 0.6 0.95 0.81 
P-WFST 0.34 0.31 0.89 0.86 

GOP 0.47 0.27 0.89 0.75 
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Figure 2. Variation in speaker-level machine-human 
correlation with increasing number of words P-WFST and 
GOP performance for Set A and Set B.    

High inter-rater correlation and low human-machine 
correlation is observed for the words: change and look.  The 
algorithms are less effective in assessing accent using these 2 
words, while on average, human listeners can judge their 
accent structure fairly easily.  When compared to the 
algorithms used in this study, humans have access to 
additional information (e.g., prosody) to judge accent; and the 
addition of this knowledge would improve automatic 
algorithm performance as well.  We are working towards 
developing such a holistic approach where information from 
multiple sources like phones, prosody etc. is combined for 
accent assessment.   

5. Conclusions 
In this study, a new approach (P-WFST) towards accent 
assessment that relies on two important steps: (i) estimating 
pronunciation errors, and (ii) assigning perceptually motivated 
penalties to the pronunciation errors has been proposed.  In 
particular, a Weighted Finite State Transducer based technique 
is used to detect pronunciation errors in speech.  Additionally, 
a Maximum Entropy (ME) based technique is employed to 
automatically learn pronunciation error penalties from human 
judgment of accent.  The proposed system is evaluated on AE 
spoken by Native American English (N-AE) and Native 
Mandarin Chinese (N-MC) speakers from the CU-Accent 
Corpus. The experimental results showed that: (i) the P-WFST 
based system achieved consistent correlation at speaker and 
word levels (0.89 and 0.34 respectively) and outperforms GOP 
by 14.8 % when evaluated on non-native speakers only, (ii) 
With only 4 words, P-WFST based system is able to achieve 
higher correlation than GOP.   
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Figure 3.  Word-dependent correlation evaluated on Set A. 
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