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Abstract
Automatic sleepiness detection is a challenging task that can
lead to advances in various domains including traffic safety,
medicine and human-machine interaction. This paper analyzes
the discriminative power of different acoustic features to detect
sleepiness. The study uses the sleepy language corpus (SLC).
Along with standard acoustic features, novel features are pro-
posed including functionals across voiced segment statistics in
the F0 contour, likelihoods of reference models used to contrast
non-neutral speech, and a set of robust to noise spectral features.
These feature sets, which have performed well in other paralin-
guistic tasks such as emotion recognition, are used to train clas-
sifiers that are combined at the feature and decision levels. The
best unweighted accuracy (UA) is obtained by combining the
classifiers at the decision level under a maximum likelihood
framework (UA = 70.97%). This performance is higher than
the best results reported in the corpus.
Index Terms: Speaker State Recognition, Paralinguistics, Af-
fective Computing, Sleepiness

1. Introduction
Sleepiness impairs cognitive abilities, reducing the efficiency of
individuals to perform operationally relevant tasks. Long dis-
tance journey causes fatigue, strain and drowsiness even to pro-
fessional drivers. According to the National Highway Traffic
Safety Administration (NHTSA), over 22-24% of car accidents
occur due to sleepy drivers [1]. Detecting sleepiness is also an
important problem for many other domains including the study
of sleep disorders, and the design of human-machine interfaces.
This paper aims to detect sleepiness from acoustic features.

Several studies have reported progress toward developing
sleepiness/fatigue detection system, using eye blinks [2, 3], vi-
sion based features [4, 5], and speech [6, 7, 8]. This paper
is particularly interested in detecting sleepiness from speech,
which can be captured from nonintrusive sensors. Krajewski
and Kröger used standard set of prosodic and spectral features
to train artificial neural networks (ANNs) and linear discrimi-
nant analysis (LDA) [6]. They reported accuracies of 88.2% in
a database collected during a sleep deprivation study. They ex-
tend their analysis by considering other features and other clas-
sifiers [7, 8]. The best performance was achieved by support
vector machine (SVM) [7].

The contribution of this paper is the use of novel acous-
tic features for detecting sleepiness. These features were intro-
duced in our previous work in the context of emotion recogni-
tion [9, 10]. The first set of features is estimated by contrast-
ing speech with reference neutral models trained with Gaussian
mixture models (GMMs). The likelihood scores of the mod-
els are used as features. These features perform well even with
language mismatch in the training and testing sets. The sec-
ond set of features corresponds to novel statistics derived from

F0 contour. Speech is segmented into voiced and unvoiced
segments. Local statistics from the F0 contour are estimated
for each voiced segment, which are then used to derive sen-
tence level statistics (e.g. the maximum of the pitch slopes de-
rived from voiced segments). The third set of features corre-
sponds to perceptual minimum variance distortionless response
(PMVDR) [11] and shifted delta cepstrum (SDC) [10]. These
features are robust to noisy environment [10]. For each of these
feature sets, separate classifiers are trained. In addition, a base-
line SVM classifier is trained with the standard acoustic features
described by Schuller et al. [12].

The individual classifiers are combined at the feature and
decision levels. For feature level fusion, the study compares the
performance when the dimension of the feature set is reduced
to different values using a chi-squared feature selection. For
decision level fusion, the classifiers are combined using hard
and soft labels under a maximum likelihood framework. The
study uses the sleepy language corpus (SLC) [6, 8]. The best
unweighted accuracies are achieved by fusing the classifiers at
the decision level using soft labels (68.68% - development set,
70.97% - testing set). These accuracies outperform the best re-
sults reported for this corpus [12].

The paper is organized as follows. Section 2 introduces the
database. Section 3 describes the baseline SVM system trained
with standard speech features. Section 4 presents the classifiers
trained with the proposed acoustic features. Section 5 describes
the fusion techniques to combine different features and classi-
fiers and their corresponding results. Section 6 concludes the
paper with discussion and future directions.

2. Database
The study uses the sleepy language corpus (SLC). It consists
of 21 hours of speech from 99 participants that were recorded
either in a realistic car-environment or in a lecture room (9,089
turns). The speech data includes isolated vowels, read speech,
commands/requests and spontaneous speech. The corpus was
annotated using the Karolinska sleepiness scale by the partici-
pants (self assessment) and by two trained evaluators. The raters
assigned a number between 1-extremely alert and 10-extremely
sleepy. If the value was above 7.5, the sample was labeled as
sleepy (SL). Otherwise, it was labeled as non-sleepy (NSL). The
corpus is divided into three groups: training (∼ 40%), develop-
ment (∼ 30%) and testing (∼ 30%). The datasets have similar
gender proportion (57% female, 43% male). The samples for
each speaker are exclusively contained in only one of the sets
(speaker independent partitions). Further details about the cor-
pus are given in references [6, 8, 12].

3. Baseline SVM system (λB)
A baseline SVM classifier is trained as reference, following a
similar approach proposed by Schuller et al. [12]. A set of com-
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Table 1: Sleepiness detection on the development set. λB –
Baseline SVM classifier (Sec.3); λL – SVM classifier trained
with likelihoods of reference models (Sec. 4.1); λF – SVM
classifier trained with functionals across voiced segment statis-
tics (Sec.4.2); λP – GMM classifier trained with PMVDR+SDC
features (Sec.4.3); λM – GMM classifier trained with MFCCs
(Sec.4.4).

Classifier %WA %UA %Recall %Precision Class

λB 70.70 67.45
80.10 75.10 NSL
54.80 58.10 SL

λL 66.60 63.95
74.00 73.20 NSL
53.90 54.90 SL

λF 50.60 57.50
31.10 76.60 NSL
83.90 41.70 SL

λP 59.45 59.28
67.10 70.32 NSL
51.81 48.07 SL

λM 61.44 57.32
64.87 68.72 NSL
49.77 45.43 SL

monly used acoustic and prosodic features in various speech
processing tasks are extracted using openSMILE. This package
is the backend of Emotion and Affect Recognition (openEar)
toolkit [13]. The feature set includes 59 Low-level descriptors
(LLDs) related to energy (4), spectral features (50) and voiced
related features (5). 33 base functionals and 6 F0 functionals
are estimated from the LLDs, producing 4,368 sentence level
features. 431 features had constant values across sentences, so
they were removed from the set. The readers are referred to
Schuller et al. [12] for more details about the features.

A linear kernel Support Vector Machine (SVM) with Se-
quential Minimal Optimization (SMO) is used as classifier.
The SVM is trained and tested with the WEKA data mining
toolkit [14], using all the features. The synthetic minority over-
sampling technique (SMOTE) is employed to compensate un-
balanced classes in the training set. This baseline classifier is
referred to here as λB . The complexity parameter of the clas-
sifier, c, is optimized on the development set, by maximizing
the Unweighted Accuracy (UA) (i.e., the unweighted average
recall). For c = 0.02, the SVM classifier achieves the high-
est UA. Table 1 gives its performance in terms of UA, weighted
accuracy (WA), precision and recall.

4. Systems trained with proposed features
4.1. Contrasting speech with neutral reference models (λL)

We have proposed the use of neutral reference models to con-
trast emotional speech [9, 15]. Fig. 1 describes the general
framework of the two-step approach. First, a neutral corpus is
used to build robust speech models (e.g., GMM and HMM).
Then, the likelihood scores are used as feature to discriminate
between neutral and non-neutral speech. The implicit assump-
tion is that acoustic features derived from non-neutral speech –
sleepy speech – deviate from the patterns observed in the ones
from neutral speech. Since the reference models will not prop-
erly fit non-neutral speech, it is expected that the likelihood
scores will be lower. One advantage of the approach is that
robust, speaker independent reference model can be built, since
there are several emotionally neutral databases available. Also,
the approach can capture paralinguistic information conveyed in
the testing set, even when they are not properly represented in
the training set, as long as they differ in any aspect from neutral
speech properties. Our previous studies have shown that this
approach achieves better performance than classifiers directly

Contrasting speech with neutral models Classification: 
sleepy versus non-sleepy

Wednesday, April 6, 2011

Figure 1: Neutral model based likelihood features [9, 15].

trained with speech features. It also generalizes better, even in
the presence of language mismatch in the training and testing
sets [9]. Here, we explore the benefits of using this approach in
the context of sleepiness detection.

For each of the features contained in the baseline set, a neu-
tral model is implemented with univariate GMM (4 mixtures).
These reference GMMs are trained with the spontaneous sen-
tences from the Wall Street Journal-based Continuous Speech
Recognition Corpus Phase II (WSJ). Notice that there is a lan-
guage mismatch between the neutral corpus (English) and the
SLC (German). The likelihoods of the models are used to train
SVM classifiers following the same procedure described in Sec-
tion 3. This classifier is referred to here as λL. The classifica-
tion results on the development set are given in Table 1. Al-
though the performance is lower than the baseline λB , Section
5 indicates that they provide complementary information.

4.2. Statistics of F0 contour across voiced segments (λF )

In Busso et al., we proposed sentence-level F0 features derived
from the statistics of the voiced regions’ patterns (see Table III
in [9]). These features are estimated as follow. First, speech
is segmented into voiced and unvoiced regions. Then, basic
functionals such as range, maximum, quartiles, slope, curva-
tures and inflections are estimated from the F0 contour for each
voiced segment. These values describe local statistics conveyed
in the F0 contour. Then, we compute the mean, maximum
and standard deviation across the functionals estimated over the
voiced segments (e.g., the mean of the pitch range estimated
across voiced segments). These statistics provide insights about
the local dynamics of the pitch contour. For example, while the
pitch range at the sentence-level gives the distance between the
extreme values, the mean of the pitch range across voiced re-
gions will indicate whether the pitch in voiced regions have flat
or inflected shapes.

This study uses the same set of 17 features proposed in
Busso et al. [9]. A SVM classifier is trained following the same
procedure described in Sec. 3. This classifier is referred to as
λF . The results on the development set are provided in Table 1.

4.3. GMM trained with PMVDR+SDC (λP )

Our previous work has shown that PMVDR features provide
improvements and robustness to classifiers trained to recognize
emotion [10]. PMVDR can better model the upper spectral en-
velope, unveiling perceptually important harmonics [11]. Un-
like Mel-frequency cepstrum coefficients (MFCCs), PMVDR
features do not require explicit filter-bank analysis. Further-
more, PMVDR coefficients are more robust to noise, which is
important since some of the speech files are corrupted by noise.
Notice that these features are LLDs.

Fig. 2 gives the block diagram to extract PMVDR features.
The algorithm includes the following steps: 1) obtain the per-
ceptually warped FFT power spectrum, 2) Compute “perceptual
autocorrelations” by utilizing the IFFT on the warped power
spectrum, 3) perform the ith order linear prediction (LP) anal-
ysis via Levinson-Durbin recursion using perceptual autocor-
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Figure 2: Block diagram to extract PMVDR features.

Table 2: Q-statistics for pairwise comparison of similarity be-
tween classifiers.

λL λB λF λP λM
λL 1 0.8689 0.2451 0.3705 0.7911
λB - 1 0.1854 0.4904 0.8272
λF - - 1 0.0322 0.4754
λP - - - 1 0.4360
λM - - - - 1

relation lags, 4) calculate the ith order MVDR spectrum from
the LP coefficients, and 5) obtain the final cepstrum coefficients
using the straightforward FFT-based approach.

The study uses a 10-dimensional PMVDR feature vector.
The analysis window is set to 25 ms with 15 ms of overlap.
Cepstral mean normalization (CMN) is applied to the final fea-
ture vector. Previous studies have showed that the SDC oper-
ation can incorporate additional temporal information into the
feature vector to produce better performance [10]. This study
employs the same strategy. A GMM is trained to process the
data frame by frame. The normalized sum of the likelihoods is
used to classify SL versus NSL at the sentence level. This clas-
sifier is referred to here as λP . The results for the development
set are shown in Table 1.

4.4. GMM trained with MFCCs (λM )

The study also considers a GMM classifier trained with standard
MFCCs (12 coefficients plus their delta and delta-delta values).
While the baseline classifier λB uses functionals derived from
MFCCs, this classifier processes the feature vector frame by
frame. We used the same window and overlapping rates that are
used for PMVDR coefficients. This classifier is referred to here
as λM . The results for the development set are shown in Table
1.

5. Fusion and Experiment Results
Table 1 reveals that the proposed classifiers have different con-
fusion matrices. For example, Table 1 indicates that the recall
for SL is approximately 84% for λF , which is higher than the
recall achieved by the baseline λB (55%). The implication is
that λF is more likely to correctly recognize SL samples than
λB . The difference in performance between the classifiers is
also observed in Table 2, which gives the Q-statistics for each
pair of classifiers [16]. This statistic gives a measure between -1
and 1 describing the similarity between the outputs of 2 classi-
fiers (the higher the absolute value, the more dependent the clas-
sifiers are). In general, the values in Table 2 are low. Given that
different classifiers provide and model different, and hopefully,
complementary information, we decide to compare feature level
fusion and decision level fusion.

5.1. Feature level fusion

To study the performance achieved with feature level fusion,
all the sentence-level features are combined to form a large
set with 7812 features (baseline features, likelihood feature and

Table 3: Sleepiness classification with feature level fusion. Sub-
sets of features are selected with chi-squared feature selection.

Features # %WA %UA
7812(all feature) 66.20 65.25
5000 68.20 66.90
3000 68.00 67.40
1000 63.30 64.00

F0 statistics). In addition, we compare the performance when
the dimension of the feature set is reduced to different values
using a chi-squared feature selection technique. In each of
these cases, a SVM is built with the training data (complex-
ity c = 0.005). Table 3 shows the results on the development
set. The best UA is achieved when the feature set is reduced
to 3000 features (67.40%). This classifier does not provide any
improvement compared to the baseline (67.45%).

5.2. Decision level fusion

This section explores fusing the classifiers at the decision level.
The proposed approach is based on maximum likelihood crite-
ria. Given n different classifiers, λi, i ∈ {1, . . . , n}, the goal
is to infer the true class label ω ∈ {SL,NSL}. If the classi-
fier λi predicts the class ωλi , the optimal decision (ω̂), based
on maximum likelihood criteria is given by Equation 1. These
probabilities are estimated using hard and soft decisions.

ω̂ = argmax
ωθ

P (ωλ1 , ωλ2 , . . . , ωλn |ω = ωθ)

= argmax
ωθ

P (ωλ1 , ωλ2 , . . . , ωλn , ω = ωθ)

P (ω = ωθ)
(1)

5.2.1. Fusion with hard decision labels

With hard decision, ωλi , ωθ ∈ {SL,NSL}. The values of the
numerator and denominator in Equation 1 are estimated from
the results of the individual classifiers on the development set.
The probability in the numerator is estimated by counting the
joint frequency of the classifiers’ outputs for each class. The
class distribution probability in the denominator is estimated by
computing the frequency of each class in the development set.
This probability serves as a normalization factor to avoid bias
produced by unbalanced classes.

5.2.2. Fusion with soft decision labels

The confidence measure (probability) of each classified sam-
ple is potentially more informative than the recognized class
labels (binary result). Replacing the recognized labels (ωλi )
in Equation 1 with the corresponding probability for one par-
ticular class (e.g., SL), results in decision level fusion with
soft decision. A Gaussian distribution is built on the proba-
bilities of the classifiers to estimate the conditional distribution
P (ωλ1 , ωλ2 , . . . , ωλn |ω = ωθ). During inference, the class
with maximum likelihood is selected.

5.2.3. Decision level results on development set

For the results reported in this section, a 10-fold cross-
validation approach is implemented to split the development set
(30 subjects). Data from 27 subjects is used to estimate the
probabilities in Equation 1. Data from the remaining 3 subjects
is used for testing the accuracies (speaker independent results).
This approach is repeated for each fold. The reported accuracies
correspond to the average performance across all subjects.
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Table 4: Sleepiness classification with decision level fusion.
Reported values are UAs and WAs for the development set.
The values are the average across all subjects in 10-fold cross-
validation experiments.

Decision Fusion
Classifiers Hard Soft

%WA %UA %WA %UA

λB ,λL 69.33 67.53 65.80 64.06
λB ,λF 70.70 67.42 68.30 66.53
λB ,λM 70.70 67.42 70.77 68.30
λB ,λP 70.70 67.42 69.67 67.86
λL,λF 66.11 63.29 68.06 67.33
λL,λM 61.06 60.97 66.96 64.58
λL,λP 66.55 63.95 67.82 65.48
λF ,λM 64.77 63.80 61.65 64.09
λF ,λP 64.19 60.37 55.71 59.65
λM ,λP 62.13 62.69 62.92 64.05
λB ,λL,λF 68.89 68.23 67.07 66.56
λB ,λL,λM 69.47 68.14 69.06 67.77
λB ,λL,λP 70.36 68.27 68.92 68.22
λB ,λF ,λM 68.92 66.67 69.26 67.17
λB ,λF ,λP 68.82 66.57 68.27 66.77
λB ,λM ,λP 69.47 67.03 70.63 68.34
λL,λF ,λM 64.70 65.54 66.04 64.54
λL,λF ,λP 63.91 64.01 66.79 65.10
λL,λM ,λP 66.21 65.09 67.41 65.05
λF ,λM ,λP 64.77 64.43 62.50 63.62
λB ,λL,λF ,λM 68.30 67.19 68.40 67.43
λB ,λL,λF ,λP 70.05 68.07 67.86 67.24
λB ,λL,λM ,λP 70.12 68.22 70.15 68.68
λB ,λF ,λM ,λP 68.85 66.67 69.06 67.43
λL,λF ,λM ,λP 64.08 64.93 66.07 65.12
λB ,λL,λF ,λM ,λP 68.82 67.07 68.92 67.72

Table 4 shows the performance for different combinations
(e.g., λL,λF denotes the combination of λL and λF ). The ta-
ble shows 11 combinations that achieve better performance than
the baseline classifier (67.45%, Table 1). The highest UA is ob-
tained by combining λB , λL, λM and λP with soft decisions.
This configuration is selected to validate the approach in the
testing set (Sec. 5.2.4). Although the classifier λF is not in this
set, Table 4 indicates that incorporating this classifier in some
cases improves the overall performance (e.g., λB ,λL,λF ).

5.2.4. Decision level results on testing set

In this section, the testing set is used to validate the accuracies
of the selected classifier (decision level fusion of λB , λL, λM
and λP with soft decisions). The entire development dataset is
used to estimate the probabilities in Equation 1. Table 5 shows
the results. The UA is higher than the best result reported for
this corpus [12]. Likewise, the proposed classifier provides a
1.07% (absolute) improvement for WA.

6. Conclusions
This paper describes our efforts to detect sleepiness by using
novel acoustic features. Different classifiers are trained with
these sets of features, which are fused at the feature and deci-
sion levels. For decision level fusion, hard and soft decisions
from individual classifiers are combined using maximum likeli-
hood criterion. The best performance in term of UA is achieved
with decision level fusion using soft decisions (68.68% – devel-
opment set, 70.97% – testing set). These accuracies outperform
the best results previously reported for this corpus.

As part of our future work, we will investigate the benefits
of using gender dependent models for the classifiers. During

Table 5: Sleepiness classification with decision level fusion
with soft labels for the test set.

Classifier %WA %UA

Schuller, et al.[12] 73.00 70.30
λB ,λL,λM ,λP 74.07 70.97

our preliminary experiments, we separately trained the baseline
classifier λB for female and male speakers. We noticed signif-
icant differences in their UAs (77.70% – male, 62.35% – fe-
male). This preliminary result suggests that gender dependent
models may improve the overall performance of the system.

7. References
[1] S. Klauer, T. Dingus, V. Neale, J. Sudweeks, and D. Ramsey, “The

impact of driver inattention on near-crash/crash risk: An analysis
using the 100-car naturalistic driving study data,” National High-
way Traffic Safety Administration, Tech. Rep., 2006.

[2] N. Galley, R. Schleicher, and L. Galley, Blink parameters as indi-
cators of driver’s sleepiness-possibilities and limitations. Else-
vier, Amsterdam, 2004, vol. X, pp. 189–196.

[3] P. Caffier, U. Erdmann, and P. Ullsperger, “Experimental evalua-
tion of eye-blink parameters as a drowsiness measure,” European
Journal of Applied Physiology, vol. 89, pp. 319–325, 2003.

[4] I. Garcia, S. Bronte, L. Bergasa, N. Hernandez, B. Delgado, and
M. Sevillano, “Vision-based drowsiness detector for a realistic
driving simulator,” in Intelligent Transportation Systems (ITSC),
2010 13th International IEEE Conference on, Sept 2010, pp. 887–
894.

[5] D. Sandberg, T. Akerstedt, A. Anund, G. Kecklund, and
M. Wahde, “Detecting driver sleepiness using optimized nonlin-
ear combinations of sleepiness indicators,” Intelligent Transporta-
tion Systems, IEEE Transactions on, vol. 12, no. 1, pp. 97–108,
March 2011.
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