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Abstract
In this study, we develop a new system for real world audio
environment matching. Environment detection within unknown
audio streams requires a system that operates in an unsupervised
manner since it will be faced with unknown environments with-
out prior information. In addition, the overall solution should be
computationally efficient for large audio collection. In the pro-
posed approach, a Gaussian mixture model(GMM) is trained
on large amounts of unlabeled audio data and used as a back-
ground acoustic model. Subsequently, an acoustic signature
vector (ASV) is computed for each environment. Here, the ASV
vector is designed to capture the unique acoustic characteristics
of an environment. Using the ASV vectors, we demonstrate
that it is possible to compute an effective similarity measure
between two acoustic environments. We demonstrate the per-
formance of the proposed system on real-world audio data, and
compare it to a traditional GMM-UBM (Universal Background
Model) system. Experiments show that our system achieves
an equal error rate (EER) that is +35% better than a baseline
GMM-UBM system.
Index Terms: Audio Environment Detection, Acoustic Signa-
ture, Real word audio data, Prof-Life-Log

1. Introduction
Audio environment detection, classification and categorization
in personal audio recordings where an individual’s entire day
is collected as a single session is very challenging and interest-
ing. Collecting personal audio recordings is becoming increas-
ing inexpensive and feasible with the advent of mobile personal
computing devices (such as smartphones) and ubiquitous inex-
pensive storage (such as cloud) [1]. The capability of audio
environment detection would be the backbone of applications
that would allow users to search through their audio (and video)
histories, generate audio-environment summaries, etc.

Audio environment detection solutions comprise of two
main parts, the system (algorithm and modeling) used for au-
dio environment matching and the set of acoustic features.
A number of features have been researched for this purpose,
namely, zero crossing rate(ZCR), Mel-frequency cepstral co-
efficients(MFCCs), band-energy, spectral centroid, bandwidth,
spectral roll-off, and spectral flux [2, 3]. Additionally, the sys-
tem can be any combination of these categories including; su-
pervised, unsupervised, feature based, or semantic based tech-
niques. In [4], the authors compare different feature based su-
pervised system based on k-nearest neighbor, hidden Markov
model(HMM) and discriminative HMM. Also, [5] proposed an
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unsupervised feature based system for audio classification and
segmentation in which the system divides the audio file into the
homogenous parts based on T 2-BIC [6] along with a clus-
tering process into similar parts to partition classes using the
GMM. On the other hand, instead of using just features, we can
extract audio environments and focus measuring their similarity
[7]. Extracting audio elements can be accomplished in a super-
vised or unsupervised manner. In a supervised approach, one
model per environment is trained using training data a prior and
used for audio environment detection during test[8]. In [9], an
unsupervised system was proposed where each audio file was
mapped into a latent space using a singular value decomposi-
tion(SVD), and subsequently compared to reference templates
using these vectors.

Traditionally, audio environment detection has been well
explored for broadcast news and meetings datasets for applica-
tions such as information retrieval, surveillance, knowledge dis-
covery, etc. [10, 8, 11]. Here, the research work has focussed
on identifying a small set of acoustic environments in relatively
well controlled environments with high-quality recordings. In
contrast, personal audio recordings can contain very diverse
acoustic environments that can change rapidly (e.g., walking
from a quiet office to a noisy cafeteria). In such scenarios,
techniques that employ supervised model building with pre-
determined labels are rendered ineffective as they cannot ad-
dress the open-set dynamic nature of the problem. Therefore, in
this study, we propose an unsupervised technique that follows a
query-by-example paradigm. By providing an example record-
ing as a query, the entire collection can be searched for similar
environments. This allows the proposed solution to be versatile
and handle new previously unseen environments. The proposed
algorithm is also designed to be fast and efficient, in order to
process large quantity of data quickly.

To facilitate this study, we have been collecting audio-
recordings using a portable audio recording unit called LENA
(Language Environment Analysis) [12]. Till date, we have col-
lected 35+ recordings where each recording session lasts about
10+ hours (which is a typical workday). The LENA unit is light
and compact, and is easily worn by a person. In our collec-
tion, the unit is worn for the entire day and it is continuously
collecting data. This collection (known as the Prof-Life-Log
corpus) provides an unique and unprecedented opportunity to
explore audio environment detection for real-world naturalistic
audio streams.

In this study, the proposed audio detection approach is
evaluated on two datasets derived from the Prof-Life-Log cor-
pus. The first dataset represents a controlled collection with
homogenous recordings of various environments. The second
dataset represents a real-world naturalistic collection. We com-
pare and contrast the environment detection results for these
two datasets. Finally, we also compare the proposed approach



to a more traditional GMM-UBM (Gaussian Mixture Model-
Universal Background Model) acoustic modeling technique that
has been successful used in speaker and language identification
problems.

2. Prof-Life-Log
The Prof-Life-Log corpus is a collection of long single-session
audio recordings in natural settings. The audio is recorded us-
ing a light-weight compact device called the LENA unit, that is
capable of recording up to 16+ hours continuously. The most
popular use of the LENA device has been to capture the lan-
guage environments of infants and young children, where the
subject in question wears the unit. In our collection, the device
is worn for the entire workday, and the audio data is captured
continuously throughout the day. Fig.1 shows the LENA device
(attached to the shirt pocket) collecting audio data is various
settings.

So far, the Prof-Life-Log corpus contains 35+ days of au-
dio recordings, resulting in a total collection of 300+ hours. For
this study, we have annotated approximately 5 hours of data
and used it for evaluation. This data was split into 10s seg-
ments and acoustic environment labels were assigned to each
segment. Annotators were allowed to assign multiple labels to
each segment. The annotation effort identified 50+ unique envi-
ronment in total. 60% of the segments contained speech, while
the other 40% contained background only (both single or mixed
environments). In contrast, we have also used the LENA device
to collect homogenous recordings of many different environ-
ments, such as, restaurant, walking (footsteps), large computing
cluster, street, music, in-vehicle, office, etc. The homogenous
recordings are different from the naturalistic recordings as they
contain pure homogenous environments and none of the record-
ings contain speech. Similar to the naturalistic collection, the
homogenous collection was also segmented into smaller audio
chunks for the purpose of this study.

3. Proposed system
In this study, we propose an unsupervised technique towards
audio environment detection. The proposed approach attempts
to capture the acoustic signature of an acoustic environment.
This process is shown in Fig.2. As shown in Fig. 2(a), a GMM
(Gaussian Mixture Model) is trained using large quantities of
diverse audio material. In principal, this process is similar to
building a UBM (Universal Background Model) for speaker and
language identification systems. In the proposed system, this
GMM is used as the background acoustic model.

As shown in Fig. 2(b), the next step is to determine the
acoustic signatures of audio environments. In what follows, we
describe this process. Now, let ~x be the acoustic feature vector
that is used to train the mentioned GMM. Also, it is assumed
that the GMM consists of M-mixtures and mj is the jth mix-
ture. Finally, assuming a generative model, let P (~x|mj) be
the posterior probability of feature vector ~x being generated by
mixturemj . As mentioned in Sec. 2, the datasets are segmented
into 10s segments for the purpose of indexing. Let the kth 10s
segment be denoted by Vk. Assuming Vk contains N feature
vectors, i.e., Vk = [ ~x1 ~x2 . . . ~xN ], we compute the average pos-
terior probability of mixture mj across all feature vectors in Vk

as,

qm =
1

N
ΣN

i=1P (~xi|mj). (1)

Next, we construct a posterior probability vector Q as

Q = [q1q2 . . . qM ]T . (2)

The dimensions of Q corresponding to the mixtures in the
GMM that are more likely to generate the observed acoustic
signal will contain higher values, and vice-versa. Hence, the
vector Q attempts to capture the unique acoustic signature of
the signal. We term Q as the acoustic signature vector (ASV).
Fig. 3 shows example ASVs for restaurant and white noise, and
compares it to speech. Following the mentioned procedure, the
ASV is generated for all segments in the search dataset. Let the
ASV for the Vk (kth segment) be denoted by Qk

Figure 3: Example acoustic signature vectors (ASVs)

For searching, we follow a query by example process (see
Fig. 2(c)). The user submits a segment and we find all the
matching segments in our dataset. In order to find the matching
segments, we first convert the user-submitted segment into its
equivalent ASV following the procedure described. We denote
the user-submitted ASV as Qtest. Now, the similarity between
Qtest andQk can be computed by using the log-cosine distance
measure, i.e.,

D(Qtest, Qk) = log(
QT

kQtest

||Qk||||Qtest||
). (3)

where, ||.|| is the norm operator. Lower values ofD(Qtest, Qk)
imply that Qtest and Qk are similar and vice-versa. Now, the
match vs. non-match binary decision can be made by comparing
D(Qtest, Qk) to a threshold τ .

4. Experiments
In this study, we have used MFCC (Mel-frequency cepstral co-
efficient) features to train the GMM. In particular, we used a
frame duration of 32ms with 10ms skip, and 27-filterbanks. We
used 12 static coefficients along with 12 velocity and accelera-
tion coefficients to form a 36-dimensional feature vector.

For the homogenous dataset, we selected 5 different envi-
ronments for experimentation, namely, computing cluster noise,
restaurant, walking (footsteps), street, and music (in-vehicle au-
dio system). Additionally, we also selected homogenous speech
segments for comparison. We had 600 segments for each audio
environment and speech, resulting in a total of 3600 homoge-
nous segments. Using the mentioned GMM, we extracted the
ASVs for these homogenous segments. In order to evaluate the
proposed system, we followed the leave-one-out approach. A



Figure 1: Data collection using the LENA unit: A single session consists of 10+ hours of audio recording with the speaker constantly
carrying the unit. Speech is collected in a wide variety of backgrounds such as Cafeteria, Office, Meeting, Walking, Driving, etc. [13].
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Figure 2: Proposed System: (a) A GMM is trained as a background acoustic model, (b) Acoustic Signature Vectors (ASVs) are extracted
for the search dataset, and (c) Matching audio segments are extracted from the dataset based on a user-submitted query.

single segment was selected from the 3600 segments, and then
compared to the other 3599 segments. This process was re-
peated for all 3600 segments.

For the naturalistic dataset, we chose 9 different environ-
ment for experimentation, namely, babble, clapping, indoors,
laughing, typing, walking (footsteps), wind, restaurant, and out-
doors. We also chose segments that contained speech and used
it in our experiments. In total, we had 1800 segments and ma-
jority of the segments contained mixed environments (i.e., the
segment had more than one label). Similar to the homogenous
dataset, the ASVs for the 1800 segments were extracted, and
the system was evaluated using the leave-one-out approach.

We also trained a standard GMM-UBM system and com-
pared its performance to the proposed system. The GMM-
UBM system uses a standard MAP (maximum a-posteriori) ap-
proach that is common in speaker and language identification
systems, and is briefly describe here. First, the background
acoustic model is used as the UBM (Universal background
model). Next, a segment is used to MAP-adapt the UBM to
form the environment-model. Now, following the leave-one-out
approach, a binary decision is made for the remaining segments,

Table 1: EER% for our system vs. GMM-UBM baseline system
on controlled set.

Mixtures 8 32 128
Proposed system 14.32 10.27 7.32

GMM-UBM 17.06 15.18 16.38

i.e., the segments either belong to the UBM or the environment
model. This is done by setting up a simple binary classification
task where the likelihood of the UBM generating the segment
is compared to the likelihood of environment model generating
the segment.

5. Results and Discussion
Table 1 compares the performance of the proposed system
with GMM-UBM for the homogenous dataset in terms of EER
(equal error rate). It is seen that the the EER for the proposed
system decreases with increasing number of GMM mixtures.
In other words, a more complex acoustic model results is better



performance. In fact, the proposed system with a 128-mixture
GMM gives the best result (7% EER) for the homogenous
dataset. Additionally, it is also observed that the proposed sys-
tem always outperforms the GMM-UBM system. Finally, un-
like the proposed system, the GMM-UBM system performance
is more or less constant with increasing model complexity. It is
possible that short segments (of 10s length) are insufficient to
adapt the UBM effectively. However, for the proposed system
increasing model complexity may allow the acoustic signature
vectors (ASVs) to be more distinct for different environments.

Figure 4: DET curve for proposed system for 36 dimensional
MFCC features on uncontrolled data set.

Fig. 4 shows the DET (detection error tradeoff) curves for
the proposed system when applied to the naturalistic dataset.
The figure shows the performance for babble, clapping, office,
restaurant, and walking environments. In addition, the DET
curves for average performance and speech are also shown. It is
observed that the best performance is obtained for the restaurant
noise environment (∼10% EER). On the other hand, the office
environment has the worst performance (∼45%). It is likely that
the constituent acoustic events (such as music, silverware etc.)
in the restaurant environment build a unique acoustic signature
that is readily distinguished. In comparison, the office environ-
ment is dominated by silence (or quiet environment) which is
probably not easily separated. Finally, the average EER for all
environments is 22%. This result shows the inherent difficulty
in separating real-world environments that tend to be mixed (un-
like artificially collected homogenous environments).

Finally, Fig. 5 compares the performance of the pro-
posed system to the GMM-UBM system for restaurant, walk-
ing, laughing and indoor environments. In addition, the average
performance for all 9 environments is also shown. Similar to
the homogenous dataset, once again the proposed system sig-
nificantly outperforms the GMM-UBM system.

6. Conclusion
In this study, a novel environment detection algorithm was
developed based on acoustic signature vectors (ASVs). The
proposed system is an unsupervised technique where a user-
submitted template can be matched to the search dataset using a
query-by-example approach. In this manner, the system is use-
ful even in previously unseen environments. The proposed algo-
rithm was shown to outperform traditional GMM-UBM based
system in an environment detection task using both homoge-
nous and naturalistic datasets. In the future, we will work to-
wards using more sophisticated acoustic models such as HMMs

Figure 5: Comparing for proposed system to the baseline
GMM-UBM system for 4 different environments on the natu-
ralistic dataset. The average performance across all 9 environ-
ments is also shown.

(Hidden Markov Models) and employ techniques similar to key-
word spotting for acoustic environment detection.
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