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Abstract
This study proposes an acoustic model adaptation scheme to
improve speech recognition in severely adverse environments
utilizing untranscribed data. In the proposed method, a clean
GMM is estimated from clean training data, and a noise-
corrupted GMM is obtained by MAP adaptation over the adap-
tation data. The Gaussian component of the adapted HMMs
is obtained using the transform of the most similar Gaussian
component of the GMM. The proposed mixture-selective model
adaptation method is evaluated using an LDC corpus which rep-
resents severely adverse communication channel environments.
The experimental results show the proposed adaptation method
is comparable or improves performance compared to conven-
tional MLLR adaptation. The proposed method is also effec-
tive at improving speech recognition using independent adap-
tation data sets. Performance results demonstrate that the pro-
posed adaptation method is significantly more effective at im-
proving speech recognition in severely noise conditions, where
transcribed data is unavailable and baseline ASR fails to accu-
rately transcribe the adaptation data due to acoustic condition
mismatch.
Index Terms: model adaptation, untranscribed data, Gaussian
mapping, adverse environments, robust speech recognition.

1. Introduction
Mismatch between training and operating conditions for any
actual speech recognition system is one of the primary factors
that severely degrades recognition accuracy. Background noise,
microphone mismatch, communication channel, and speaker
variability are major sources of such mismatch. Recently, as
mobile devices such as smart phones have become popular,
speech recognition technology via mobile systems is becom-
ing more challenging, since a range of background noise and
time-varying channel effects make recognition more difficult.
This study focuses on an acoustic model adaptation scheme
for robust speech recognition in severely adverse environments,
where transcription of the adaptation data is not available.

To minimize the acoustic mismatch, extensive research has
been conducted in recent decades, which includes many types
of speech/feature enhancement methods such as Spectral Sub-
traction, Cepstral Mean Normalization (CMN), and a variety of
feature compensation schemes. Various model adaptation tech-
niques have been successfully employed such as the Maximum
A Posteriori (MAP), Maximum Likelihood Linear Regression
(MLLR), and Parallel Model Combination (PMC). Recently,
missing-feature methods have shown promising results [1]-[5].

Acoustic model adaptation is generally considered to be
one of the most popular approaches to effectively improve

speech recognition in adverse environments. However, in real
operating conditions, data for model adaptation may not be eas-
ily obtained, which represents the target condition for speech
recognition. Effective transcription is also not available in
general, which is usually required for conventional adaptation
methods such as MAP [2] and MLLR [3]. In particular, such
a situation can be easily encountered for the languages where
research on speech technology is not extensively explored (i.e.,
low resource language).

In order to utilize untranscribed data for model adaptation,
an unsupervised training technique is employed [6]-[8]. In gen-
eral, a baseline ASR system is used for transcribing the adap-
tation data, and the resulting transcription is used for model
adaptation. An iterative procedure is also employed, where
the adapted model is used again for generating a more accu-
rate transcription. For such an approach, the baseline ASR sys-
tem is expected to be sufficiently reliable to generate a reason-
ably accurate transcription for unseen data, and some part of the
adaptation data needs to be manually transcribed for an initial
model. However, if mismatch between the baseline system and
target condition representing the adaptation data is significant,
the transcription performance drastically degrades, so the re-
sulting model adaptation cannot be accomplished successfully.

In this study, we propose a simple model adaptation tech-
nique to increase speech recognition performance using untran-
scribed adaptation data. In the proposed method, a clean Gaus-
sian Mixture Model (GMM) is obtained offline, and adapted
over the adaptation data to generate an environment-dependent
(i.e., noise-corrupted) GMM. Each Gaussian component of the
clean Hidden Markov Models (HMM) is transformed using the
mixture-selective transformation of the most similar Gaussian
component of the GMM, resulting in a noise-corrupted HMM.
Therefore, the proposed technique does not require transcrip-
tion for the adaptation data. In the experiments, the proposed
adaptation method is evaluated on the Linguistic Data Consor-
tium (LDC) [9] RATS corpus, which represents severely ad-
verse communication environments. To prove the effectiveness
of the proposed method over an independent corpus, the LRE-
07 and LRE-09 database [9] are also evaluated.

2. Communication Channel Environment
Speech Corpus

This section describes the speech corpus used in this study. The
speech corpus has been released by LDC as part of the Robust
Automatic Transcription of Speech (RATS) program which is
sponsored by the Defense Advanced Research Projects Agency
(DARPA). The goal of the project is to create technology capa-
ble of accurately determining speech activity regions (SAD),
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Figure 1: Example of speech sample from different channels:
(a) original clean, (b) MHT, (c) GXT, (d) GDX, and (e) V30.

detecting key words (KWS), and identifying language (LID)
and speaker (SID) in highly degraded communication channels.
The speech corpora in the project are generated by transmitting
an original clean speech database over different combinations
of transmitter and receivers using LDC’s multi radio-link chan-
nel collection system. The LDC Callfriend Farsi [9] corpus was
used as source data for the speech corpus used in our study.
The original Callfriend Farsi consists of western Farsi language
conversations which were recorded over the telephone line.

In this study, four channels (MHT, GXT, GDX, and V30)1

of data are selected, which reasonably represent actual field
communication environments. They indicate different combi-
nation of transmitters and receivers, degrading original speech
signals by different characteristics of signal modulation meth-
ods and carrier frequencies. The effects of the communica-
tion channels formulate distortions in speech signals, which
are considered as convolutional interfering components. Fig.
1 presents an example speech utterance from the four chan-
nels (a) original clean, (b) MHT, (c) GXT, (d) GDX, and (e)
V30 used in this study. As seen, there is only some back-
ground noise, however, the transmitted speech signals for the
different channels contain considerably changes in waveforms
structure. We believe that the different channel conditions bring
highly different distortion effects to the signals, which result
in significant mismatch between the original and transmitted
speech signals. The objective speech quality measures includ-
ing Signal-to-Noise-Ratio (SNR) and Perceptual Evaluation of
Speech Quality (PESQ) are evaluated over the LDC RATS Farsi
corpora, and details will be discussed in Sec. 4.

3. Gaussian Map Based Model Adaptation
using Untranscribed Data

The proposed model adaptation method employs GMM adap-
tation using untranscribed adaptation data. A noise-corrupted
speech GMM is obtained via a conventional adaptation tech-
nique, and used for a Gaussian mapping procedure to generate
adapted HMMs. As an initial stage, aK-component GMM rep-
resenting the clean speech signalx in the cepstral domain is

1They are originally symbolized as mhtaor, gxt tr4, gdx i75, and
v30 v24, or channel A, C, D, and G respectively.

estimated offline from the clean training data, which is given
by,

p(x) =

K∑

k=1

ωkN (x|µ
x,k,Σx,k). (1)

In this study,x consists of 39 elements including the static fea-
ture vector (c0-c12) and dynamic feature vectors (i.e., first and
second time derivatives).

Next, a noise-corrupted GMM is obtained by utilizing a
conventional model adaptation method. In our experiment,
MAP adaptation is employed, which generally provides im-
proved performance compared to MLLR when the adaptation
data is sufficiently available. As expected, transcription of the
adaptation data is not required, since the adaptation is applied
to the GMM. In this study, only mean and variance parameters
are updated. The obtained noise-corrupted GMM can be repre-
sented by,

p(y) =

K∑

k=1

ωkN (y|µ
y,k,Σy,k). (2)

Now eachkth Gaussian componentp(x|k) of the clean GMM
has a one-to-one mapping relationship with the corresponding
componentp(y|k) of the noise-corrupted GMM as follows,

{µ
x,k,Σx,k} ↔ {µ

y,k,Σy,k}. (3)

In the proposed model adaptation method, the most sim-
ilar Gaussian component of the clean GMM is determined
for each Gaussian component of the clean HMMs, and then
the transform of the corresponding component in the noise-
corrupted GMM is applied again to the Gaussian component
of the HMM to generate noise-corrupted HMMs. Thesth
state’sith Gaussian component of the output probability func-
tion q(x|s, i) consisting of the clean HMMs can be represented
by {µ

x,s,i,Σx,s,i}. The proposed method employs a KL dis-
tance to measure the statistical similarity between Gaussian
components,

k
min

s,i = arg min
k

{KL dist(p(x|k), q(x|s, i))}. (4)

In the proposed method, the mean parameterµ
y,s,i for the

noise-corrupted HMMs is obtained by compensating a constant
bias transform of the most similar Gaussian component of the
clean GMM, and the varianceΣy,s,i is generated by replacing
one of corresponding components in the noise-corrupted GMM
as follows,

µ
y,s,i = µ

x,s,i + (µ
y,kmin

s,i
− µ

x,kmin

s,i
)

Σy,s,i = Σ
y,kmin

s,i
. (5)

The assumption of the constant bias transform of the mean pa-
rameter in the cepstral domain is motivated by other data-driven
methods [10]. Fig. 2 illustrates the procedure of model adap-
tation in both the GMM model space and HMM model space.
Here, the bold faced arrow and ellipse indicate the bias trans-
form of the mean vector and variance of the determined Gaus-
sian component, which are utilized to generate the Gaussian
component of the adapted HMMs.

4. Experimental Results
4.1. Corpus Evaluation

To observe the degree of the channel corruption of the LDC
RATS Farsi speech data used in this study, we evaluated ob-
jective speech quality measures including SNR and PESQ [11].



Figure 2: Illustration of the proposed model adaptation tech-
nique: (a) One-to-one mapping of Gaussian components of
clean and noise-corrupted GMMs, and (b) Adapted Gaussian
component (s, i) of HMM utilizing the transform of the most
similar GMM mixture component k2.

Table 1: STNR (dB) and PESQ (-0.5 to 4.5 MOS scale) over
LDC RATS Farsi data.

MHT GXT GDX V30
STNR 23.42 26.21 21.84 59.23
PESQ 2.86 2.63 1.96 3.87

The Farsi data consists of 4565 segments from 17 audio record-
ings providing about 7-hour duration in total per each chan-
nel. The SNR was obtained using the NIST Speech Quality
Assurance tool (i.e., the STNR estimator) [12]. Table 1 shows
the averaged STNR and PESQ values measured over all seg-
ments per each channel. From the results, the channels GDX
and V30 show the lowest and highest values in both STNR
and PESQ measures respectively. For comparison, landline
telephone NTIMIT and cellphone CTIMIT corpus show 35.79
dB/2.19 and 24.14 dB/1.74 in averaged STNR/PESQ respec-
tively. These evaluation results suggest that the channel effects
for the speech corpus used in this study bring significant cor-
ruption in signals, providing severely adverse environments for
speech recognition.

4.2. Baseline ASR System Performance

Among the 4565 segments per each channel of Farsi data, 3651
and 914 segments were used for training/adaptation and test-
ing respectively in these experiments. We employed SPHINX3
[13] as the Hidden Markov Model (HMM) based speech rec-
ognizer, which was built using training data from the clean
channel. Each HMM represents a tri-phone which consists of
3 states with an 8-component GMM per state, which is tied
with 2093 states. The task has 8765 Farsi words as the vocabu-
lary, and a trigram language model was obtained by training on
the transcription of the test set. A conventional MFCC feature
front-end is employed in the experiment, which was suggested
by the European Telecommunication Standards Institute (ETSI)
[15]. An analysis window of 25 msec in duration is used with
a 10 msec skip rate for 16-kHz speech data. The computed 23
Mel-filterbank outputs are transformed to 13 cepstrum coeffi-
cients including c0 (i.e., c0-c12). The first and second order
derivatives are also included, resulting in a feature vector of 39-
dimension. The baseline ASR system shows 47.63% in Word
Error Rate (WER) for the clean (channel) condition data.

Performance of the baseline system was evaluated over
each of the channels using several existing robustness front-
end algorithms. Spectral Subtraction (SS) [1] and Cepstral
Mean Normalization (CMN) were selected as conventional al-

Table 2: Recognition performance in WER (%) employing con-
ventional front-end algorithms with clean training and matched
training conditions.

Clean Training
Clean Testing Condition: 47.63
MHT GXT GDX V30 Avg.

CMN 87.31 90.66 95.56 71.98 86.63
SS + CMN 78.53 86.28 93.26 62.36 80.11
ETSI AFE 86.49 91.55 93.04 72.59 85.92
Matched Training

55.56 61.62 59.91 50.60 56.92
SS + CMN

gorithms. They represent some of the most commonly used
techniques for additive noise suppression and removal of chan-
nel distortion respectively. The Advanced Front-End (AFE) al-
gorithm developed by ETSI was also evaluated, which contains
an iterative Wiener filter and blind equalization [16].

Table 2 shows speech recognition performance in WER us-
ing the conventional robustness front-end algorithms. It can be
seen that combination of SS and CMN significantly improves
recognition performance over all different channels. It is worth
noting that the ETSI AFE was not effective for all channel con-
ditions compared to the combination of SS and CMN, which
is reported by many research groups to be highly effective at
improving speech recognition accuracy in various noisy condi-
tions. It indicates that the communication channel conditions
included in the speech corpus used in these experiments are ex-
tremely challenging for speech recognition. The last row of Ta-
ble 2 shows the recognition performance with a combination of
SS and CMN in a matched training condition which was ob-
tained by using the same channel degraded training data. It
would provide an upper bound on performance for evaluating
the model adaptation approaches in the next sections.

4.3. Performance Evaluation of the Proposed Adaptation
Method using Untranscribed Data

Table 3 shows speech recognition performance employing var-
ious model adaptation methods using untranscribed data. The
training portion (i.e., 3651 segments) per each channel is used
as adaptation data, and their ground-truth transcription are as-
sumed to be unavailable in this experiment. Here, both adapta-
tion and testing data were processed using Spectral Subtraction
and CMN, so the second row (SS+CMN) of Table 2 is a base-
line performance for comparison. The transcription of adapta-
tion data for MAP and MLLR was obtained in an unsupervised
mode using the baseline ASR engine which is trained on clean
channel data.

The results show that MAP adaptation was not effective
compared to the baseline performance with 78.01% vs. 80.11%
in averaged WER. Acoustic mismatch between HMMs of the
baseline ASR and adaptation data should generate inaccurate
transcriptions for model adaptation. It is also expected that the
language model trained only on the original text of the test data
decreases transcription performance further. Such a situation
makes MAP performance ineffective, instead, MLLR shows
relatively better performance with 72.33% in averaged WER,
which transforms the model parameters using a matrix that rep-
resents an entire statistical change in the parameter space.

In the proposed Gaussian Map based Adaptation (GMA)
method, the clean GMM with 512 Gaussian components is ob-
tained by training over the training data of the clean channel,
and the noise-corrupted (i.e., channel dependent) GMM is ob-
tained by MAP adaptation of the clean GMM over the adapta-



Table 3: Recognition performance in WER (%) employing
MAP, MLLR, and proposed GM-based adaptation algorithms.

MHT GXT GDX V30 Avg.
MAP 78.15 84.13 90.25 59.49 78.01
MLLR 65.62 76.97 86.39 60.34 72.33
GMA 65.89 78.32 81.75 52.39 69.59
GMA + MLLR 64.14 75.45 82.54 52.73 68.72

Table 4: Recognition performance in WER (%) employing
MLLR and proposed GM-based adaptation algorithms using
LRE-07 and LRE-09 database.

LRE-07 MHT GXT GDX V30 Avg.
MLLR 68.61 80.23 89.15 67.59 76.40
GMA 67.82 79.31 83.51 55.63 71.57

LRE-09 MHT GXT GDX V30 Avg.
MLLR 68.12 77.62 89.29 61.51 74.14
GMA 67.38 79.94 86.89 54.08 72.07

tion data per each channel. The proposed GMA method shows
comparable performance to MLLR or outperforms MLLR, re-
sulting in 69.59% averaged WER. In particular, GMA shows
significantly improved recognition performance for channels
GDX and V30. By combining MLLR as an initial model ob-
tained by the GMA method, we obtained a slight improved per-
formance for channels MHT and GXT. These results show that
the proposed GMA adaptation method is significantly effective
in severely noisy conditions, where transcribed data is unavail-
able and a baseline ASR fails to accurately transcribe the adap-
tation data due to acoustic condition mismatch.

4.4. Performance Evaluation using LRE-07 and LRE-09
Adaptation Data

In this section, we prove the effectiveness of the proposed adap-
tation method using independent adaptation data sets. Here, the
adaptation data were generated by transmitting the Farsi lan-
guage parts of LRE-07 and LRE-09 through the same radio-
link channel collection system. A 2.6-hour and 4-hour set of
speech data per each channel were used for LRE-07 and LRE-
09 respectively. Table 4 shows speech recognition results us-
ing LRE-07 and LRE-09 data for model adaptation. Here it is
also assumed that transcriptions of the adaptation data are not
available. In a manner similar to the experiment of Table 3, the
(clean condition trained) baseline ASR was used to generate
the initial transcription for MLLR adaptation. Here, it can be
expected that the scope of the vocabulary and language model
as well as acoustic model mismatch would result in highly in-
accurate transcriptions. The performance of MLLR in this ex-
periment is lower compared to the results of MLLR in Table 3,
since the mismatch of vocabulary and language model is larger
in this experiment. It can be seen that the proposed GMA adap-
tation method does outperform conventional MLLR using both
LRE-07 (71.57% vs.76.40%) and LRE-09 (72.07% vs. 74.14%)
corpora as adaptation data. These results confirm that the pro-
posed GMA method can be effectively employed to improve
the acoustic model for speech recognition utilizing independent
adaptation data sets without their corresponding transcriptions.

5. Conclusions
In this study, an acoustic model adaptation scheme was pro-
posed to improve speech recognition in severely adverse envi-
ronments utilizing untranscribed data. In the proposed method,
a clean GMM is estimated from clean training data, and a

noise-corrupted GMM is obtained by employing MAP adap-
tation over the adaptation data. The Gaussian component of
the clean HMMs is transformed using the transformation of
the most similar Gaussian component of the GMM, resulting
in improved noise-corrupted HMMs. The proposed adaptation
method was evaluated using the LDC RATS Farsi data which
represents severely adverse communication channel environ-
ments. The method showed comparable or improved perfor-
mance compared to conventional MLLR adaptation. The pro-
posed method was also effective at improving speech recogni-
tion using independent adaptation data sets LRE-07 and LRE-
09. The experimental results demonstrated that the proposed
Gaussian Mapping based model adaptation method can be ef-
fectively employed to improve speech recognition, where tran-
scribed data is unavailable and baseline ASR fails to accurately
transcribe the adaptation data due to the acoustic condition mis-
match.
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