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Abstract
The recently introduced mean Hilbert envelope coefficients
(MHEC) have been shown to be an effective alternative to
MFCCs for robust speaker identification under noisy and rever-
berant conditions in relatively small tasks. In this study, we
investigate the effectiveness of these acoustic features in the
context of a state-of-the-art speaker recognition system. The
i-vectors are used to represent the acoustic space of speakers,
while modeling is performed via probabilistic linear discrim-
inant analysis (PLDA). We report speaker verification perfor-
mance on the NIST SRE-2010 extended telephone and micro-
phone trials for both female and male genders. Experimental
results confirm consistent superiority of MHECs to traditional
MFCCs within i-vector speaker verification, particularly under
microphone and telephone training-test mismatch conditions.
In addition, fusion of subsystems trained with the individual
front-ends proves that the two acoustic features (i.e., MHEC
and MFCC) provide complimentary information for recogniz-
ing speakers.
Index Terms: Mean Hilbert Envelope Coefficients (MHEC),
mismatch conditions, NIST SRE, speaker recognition

1. Introduction
Current state-of-the-art speaker recognition systems are primar-
ily focused on channel and session mismatch compensation
techniques in the back-end. The research trend in this domain
has gradually migrated from joint factor analysis (JFA) based
methods, which attempt to model the speaker and channel sub-
spaces separately [1], towards the i-vector approach that models
both speaker and channel into a single space termed the total
variability space [2]. Various classifiers, models, and scoring
methods are conveniently applied to i-vectors. These include
support vector machines (SVM), probabilistic linear discrimi-
nant Analysis (PLDA) [3], [4], and the simple yet effective co-
sine distance (CD) based scoring which is typically combined
with LDA followed by within-class covariance normalization
(WCCN) [5].

In spite of porgress seen in back-end advancements, several
research efforts have been made recently that target at develop-
ing acoustic features (or front-ends) which are not only capa-
ble of capturing speaker identity conveyed in the speech signal,
but also robust to environmental distortion (e.g., see [6], [7],
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[8]). Although originally designed to represent acoustic spaces
of different phonemes for ASR, MFCCs have been the most
widely used features for speaker recognition tasks, probably
because they provide acceptable performance in NIST SRE re-
lated applications. However, it is well-known that MFCC based
systems are susceptible to training and test mismatch in environ-
mental noise and reverberation. There are several factors con-
tributing to this susceptibility, among which the following are
most dominant: 1) the spectrum estimation in standard MFCC
extraction is not robust to noise and channel distortions [7], and
2) the auditory model used in MFCC is neither accurate, nor
optimal for speaker recognition. This has been our motivation
in the design of robust acoustic features that are less affected by
background noise [9] or room reverberation [10]. In this study,
we evaluate the effectiveness of our recently introduced Mean
Hilbert Envelope Coefficients (MHEC) [10], in the context of a
state-of-the-art i-vector speaker verification system with PLDA
modeling.

We have previously demonstrated that, when compared to
MFCCs, employing MHECs as acoustic features results in sub-
stantial gains in performance of a GMM based speaker iden-
tification system under noisy and/or reverberant mismatched
conditions in relatively small tasks. This study represents our
first attempt to evaluate MHECs versus MFCCs on a speaker
verification task at the scale of the NIST SRE. Evaluations are
performed using NIST SRE-2010 extended telephone and mi-
crophone trials (core conditions 1 through 5) for bothe female
and male genders. In addition to evaluating speaker recognition
performance individually for each front-end, we investigate fu-
sion of the subsystems trained with each feature. Results of the
fusion experiment shall reveal whether or not the two acoustic
representations provide complimentary information for speaker
recognition applications.

2. Mean Hilbert Envelope Coefficients
In this section, the procedure for extracting the acoustic feature
parameters based on the Hilbert envelope of Gammatone fil-
terbank outputs, is described. A block diagram illustrating the
proposed feature extraction scheme is depicted in Figure 1.

First, the preemphasized speech signal s(t) is decomposed
into 24 bands through a 24-channel Gammatone filterbank
[11]. The filterbank center frequencies are uniformly spaced on
equivalent rectangular bandwidth (ERB) scale between 300 and
3400 Hz (assuming a telephone bandwidth at a sampling rate of
Fs = 8 kHz). Next, since we are mostly interested in slowly
varying amplitude modulations rather than the fine structure,the
temporal envelope of the jth channel output s(t, j) is computed
as the squared magnitude of the analytical signal obtained using
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Figure 1: Block diagram of the proposed feature extraction scheme. The symbols represent the output signals at each stage.

the Hilbert transform. More specifically, let

sa(t, j) = s(t, j) + iŝ(t, j), (1)

denote the analytical signal, where ŝ(t, j) is the Hilbert trans-
form of s(t, j), and i is the imaginary unit. The temporal enve-
lope es(t, j) is thus calculated as,

es(t, j) = s2(t, j) + ŝ2(t, j) . (2)

Here, es(t, j) is also called the Hilbert envelope of the signal
s(t, j). At the next stage, in order to further suppress the re-
maining redundant high frequency components, the Hilbert en-
velope es(t, j) is smoothed using a low-pass filter with a cut-off
frequency of fc = 20 Hz as,

esn(t, j) = (1− α) es(t, j) + α esn(t− 1, j), (3)

where α is a smoothing factor (inversely) exponentially propor-
tional to the cut-off frequency as,

α = exp

(
−2πfc
Fs

)
. (4)

Next, the smoothed Hilbert envelope esn(t, j) is blocked into
frames of 25 ms duration with a skip rate of 10 ms. A Hamming
window is applied to each frame to minimize discontinuities
at the edges. To estimate the temporal envelope amplitude in
frame l, the sample means are computed as,

S(l, j) =
1

N

N−1∑
t=0

w(t)esn(t, j) , (5)

where w(t) denotes the Hamming window and N is the frame
size in samples. Note that S(l, j) is also a measure of the spec-
tral energy at the center frequency of the jth channel, and there-
fore provides a short-term spectral representation of the speech
signal s(t). To compress the dynamic range of the estimated
spectral parameters S(l, j), the natural logarithm is applied. In
addition, the discrete cosine transform (DCT) is applied to: 1)
convert the spectrum to the cepstrum, and 2) decorrelate the var-
ious feature dimensions. The latter is important because GMMs
with diagonal covariance matrices can then be used to model the
acoustic space of each speaker (as opposed to full covariance
matrices). The output is therefore a matrix of 24-dimensional
cepstral features C(l, j), entitled the mean Hilbert envelope co-
efficients (MHEC). For our speaker verification experiments,
only the first 12 coefficients are retained after DCT (excluding
c0).

Finally, because the cepstral representation of the speech
spectrum is only a measure of the local pattern of the signal
at a given frame, the first and second temporal cepstral deriva-
tives are computed and appended to the static features to cap-
ture the dynamic pattern of speech over time. This results in
36-dimensional feature vectors.

Before concluding this section, it seems worthwhile to
make a few remarks on the advantages of using the Gammatone
filter-bank. First, the Gammatone filterbank simulates more ac-
curately the effect of auditory filtering, which takes place along
the basilar membrane in the cochlea, and is closely coupled with
perception in humans [11]. Second, it provides a direct way to
compute the so called “subjective spectrum” from the speech
signal. In other words, it obviates any need for FFT calculation
and, when compared to MFCCs, mel-band integration. More
specifically, it helps reduce the computational load of taking a
typical 256-point FFT (25 ms frames at Fs = 8 kHz), as well
as integration of the estimated magnitude/power spectrum into
24 mel-bands for each frame.

3. Experimental Setup
In this section, the configuration for our i-vector speaker recog-
nition system is briefly described.

3.1. Feature Extraction

MHECs and MFCCs are extracted as acoustic features from
speech material for speaker verification experiments. In order
to have a fair and meaningful comparison, the same configu-
ration parameters are used to extract the two features. We use
the popular HMM toolkit (HTK) implementation of MFCCs:
36-dimensional feature vectors (12 MFCC +∆ + ∆∆) are ex-
tracted using 25 ms frames with 10 ms shift. A total of 24 fil-
ters are used in the mel-filterbank which cover the frequency
range 300–3400 Hz (i.e, the telephone bandwidth). Both fea-
tures are normalized toward a Gaussian distribution through
feature warping over a 3-second sliding window [12]. To re-
move silence and low energy speech segments, a two stage
voice activity detection (VAD) is performed. In the first stage,
which is used before feature extraction, a soft VAD based on
several voicing measures is utilized to remove the non-speech
segments. This strategy saves large amount of computation,
since in this manner features are only extracted from speech
segments. In the second stage, which is applied after the fea-
ture extraction, an energy based method is employed to drop
the low-energy speech frames as well as the residual non-speech
frames from the soft VAD in the first stage. These low energy
frames are easily affected by noise and channel variabilities, and
do not carry much speaker-dependent information .

3.2. UBM Training

Gender dependent 1024-mixture universal background models
(UBM) are trained using only the English telephone data se-
lected from the NIST SRE 2004, 2005, 2006, as well as the
Switchboard 2 (Phase III) and Switchboard Cellular (Part 1 and
2). These corpora are available through LDC [13] or by partici-
pating in the SRE evaluations [14, 15]. There are a total of 9676
conversations from 951 male speakers, and 12490 conversations
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Figure 2: MFCC vs MHEC performance with varying number
of columns in the eigenvoice matrix Φ for extended telephone-
telephone trials (core condition 5).

from 1168 female speakers. The HTK is employed for UBM
training with 15 expectation maximization (EM) iterations per
binary split. The UBM is later used to extract the zeroth and
first order Baum-Welch statistics for i-vector extraction.

3.3. I-vector Extraction

I-vectors are extracted for both MFCC and MHEC features us-
ing the front-end factor analysis scheme as described in [2].
This is accomplished in a similar manner to eigenvoice learning
with the exception that instead of labeling speaker and channel
information for subspace modeling, each utterance is assumed
to be produced by a unique speaker. The total subspace matri-
ces with 400 columns are estimated from the same data used for
UBM construction.

3.4. PLDA

A Gaussian PLDA with a full-covariance noise model is used
for both session variability compensation and scoring [4]. In
this generative model, an arbitrary D dimensional i-vector ηr
extracted from a speech utterance is expressed as,

ηr = m+ Φβ + εr, (6)

where m is the D × 1 speaker independent mean vector, Φ is
the D × NEV rectangular matrix representing a basis for the
speaker-specific subspace/Eigenvoices, β is an NEV × 1 la-
tent vector having a standard normal distribution, and εr is the
D × 1 random vector representing the full covariance residual
noise. Here, the only free parameter is the number of eigen-
voices NEV , which denotes the number of columns in the ma-
trix Φ, and is set to 200 in our experiments. To train the PLDA
model, the i-vectors extracted from the UBM dataset as well as
microphone data from NIST SRE 2005 and 2006 are utilized.

4. Results and Discussion
To evaluate the effectiveness of MHECs in large-scale speaker
recognition applications, as well as to compare their perfor-
mance against MFCCs, speaker verification experiments are
conducted using the NIST SRE-2010 extended microphone and
telephone trials (conditions 1–5) for both female and male gen-
ders.

In our first experiment, we investigate the effect of number
of columns in the eigenvoice matrix Φ on the performance by
varying the dimension from 50 to 400 with an increment of 50.
Here, only the extended telephone-telephone male trials (core
condition 5) are considered. Results are illustrated in Fig. 2 in
terms of equal error rate (EER) as well as the new and old min-
imum detection cost functions (minDCF). It is evident from the
figure (Fig. 2 (a)-(c)) that the subsystem trained with MHECs
consistently outperforms the one trained using MFCCs, for all
eigenvoice dimensions in the matrix Φ. For eigenvoice dimen-
sions greater than 100, the MHEC based subsystem exhibits a

Table 1: Performance of the MFCC and MHEC based subsys-
tems as well as their fusion in terms of EER for NIST SRE-2010
extended microphone and telephone trials (conditions 1–5)

Gender Cond.
EER (%)

MFCC MHEC Fusion

Female

1 2.49 2.49 2.14

2 4.47 3.99 3.50

3 4.13 3.42 3.01

4 2.97 2.68 2.37

5 3.73 3.48 3.37

Male

1 1.04 0.71 0.61

2 1.83 1.47 1.21

3 2.78 1.97 1.92

4 1.72 1.64 1.38

5 2.53 2.10 1.85

Table 2: Performance of MFCC and MHEC based subsys-
tems as well as their fusion in terms of new (old) minDCF
for NIST SRE-2010 extended microphone and telephone trials
(conditions 1–5)

Gender Cond.
minDCF new (old)

MFCC MHEC Fusion

Female

1 0.394 (0.114) 0.370 (0.106) 0.332 (0.094)

2 0.685 (0.234) 0.610 (0.200) 0.591 (0.178)

3 0.616 (0.196) 0.544 (0.156) 0.498 (0.146)

4 0.534 (0.160) 0.481 (0.129) 0.462 (0.125)

5 0.543 (0.176) 0.495 (0.159) 0.462 (0.144)

Male

1 0.256 (0.046) 0.186 (0.035) 0.190 (0.034)

2 0.446 (0.100) 0.340 (0.079) 0.334 (0.068)

3 0.494 (0.132) 0.427 (0.116) 0.394 (0.100)

4 0.325 (0.087) 0.247 (0.067) 0.243 (0.062)

5 0.430 (0.137) 0.372 (0.104) 0.339 (0.099)
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Figure 3: DET curves for the MFCC and MHEC based sub-
systems as well as their fusion. Results are pooled from all ex-
tended microphone and telephone trials (conditions 1–5).

nearly constant performance in terms of both EER and the old
minDCF which reflects its robustness to this PLDA parameter.

In our next experiments, the number of columns in the
eigevoice matrix Φ is fixed to 200, and the subsystems trained
with individual acoustic features are evaluated using the ex-
tended microphone and telephone trials (conditions 1–5). In ad-
dition, the subsystems are fused to investigate whether or not the
two front-ends are complimentary. The fusion is accomplished
by adding the normalized scores of the individual subsystems.
Results of these experiments are presented in Tables 1 and 2, in
terms of EER as well as the new and old minDCFs, respectively.
It is observed that, across all training and test conditions and
for all evaluation metrics, the MHEC subsystem shows superior
performance compared to the MFCC subsystem. The greatest
gain in EER is seen for condition 3 in Table 1 where relative
improvements of 17% and 29% are achieved for female and
male genders, respectively. Condition 3 represents a challeng-
ing mismatch between training and test conditions where trials
involve interview training speech and normal vocal effort con-
versational telephone test speech. Overall, the improvements
are significant given the scale of the experiments which is re-
flected in the number of trials in each condition.

It can also be seen from the tables that the additive fusion
of the individual subsystems yields substantial gains in perfor-
mance for all conditions and with all metrics. This indicates
that the two acoustic features are complimentary.

Fig. 3 shows the detection error trade-off (DET) curves
for the MFCC and MHEC based subsystems along with their
fusion individually for female and male genders. The curves
are obtained by pooling scores of all extended microphone and
telephone trails (conditions 1–5), individually for female and
male genders. Consistent with our previous observations, it is
seen that the MHEC based subsystem achieves superior per-
formance across a wide range of operating points on the DET
curve. Moreover, subsystem fusion can dramatically boost the
performance, which confirms the complimentary nature of the
two features for speaker recognition.

5. Conclusions
In this study, we have explored the effectiveness of our recently
introduced MHEC features in the context of a state-of-the-art
i-vector speaker recognition system with PLDA modeling. Ex-
periments were conducted using the NIST SRE-2010 extended
microphone and telephone trials for both female and male gen-
ders. The obtained results confirmed that the subsystem trained
with MHECs consistently outperformed that trained using tradi-
tional MFCCs, across all core conditions available in the NIST
SRE-2010 trials. In addition, it was verified that the fusion of
the subsystems trained with the individual front-ends yields sig-
nificant gains in speaker recognition performance. This indi-
cates that the two acoustic representations provide complimen-
tary information for recognizing speakers.
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