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Abstract 
A new adaptation strategy for distant noisy speech is created 
by phoneme class based approaches for context-independent 
acoustic models. Unlike the previous approaches such as 
MLLR-MAP adaptation which adapts acoustic model to the 
features, our phoneme-class based adaptation (PCBA) adapts 
the distant data features to our acoustic model which has 
trained on close microphone TIMIT sentences. The essence of 
PCBA is to create a transformation strategy which makes the 
distribution of phoneme-classes of distant noisy speech be 
similar to those of close microphone acoustic model in thirteen 
dimensional MFCC space (mostly in c0-c1 plane). It creates a 
mean, orientation and variance adaptation scheme for each 
phoneme class to compensate the mismatch. New adapted 
features, and new and improved acoustic models which are 
produced by PCBA are outperforming those created by 
MLLR-MAP adaptation for ASR and KWS. And PCBA offers 
a new powerful understanding in acoustic-modeling of distant 
speech. 
 
Index Terms: phoneme class, distant noisy speech, mismatch 
acoustic modeling, feature adaptation 

1. Introduction 
Phoneme class based approaches have been previously used in 
speech studies to address different problems. It is believed that 
recognition of phoneme-classes provides speech processing 
tasks with additional acoustic information that can be utilized 
to improve the speech enhancement [1]. In the earliest studies, 
a hidden-Markov model based phoneme class detection 
algorithm was proposed to help for speech enhancement of 
noisy speech [2]. In addition to speech enhancement, 
phoneme-class based approaches have also been used more 
recently in emotion detection [3]. As a result, phoneme classes 
can be used in variety of speech processing studies because of 
the informative and productive characteristics of phoneme-
class based approaches.  
 
At this point, it would be useful to consider employing 
phoneme-classes to find a new mismatch compensation and 
acoustic modeling strategy for distant speech. It is possible to 
analyze the c0-c1 scatter of close talk microphone speech with 
a synchronized distant microphone equivalent where it is 
observed essentials differences between these two scatters. 
While the close talk speech is distributed over a large area 
within a specific (umbrella-like) shape in the c0-c1 plane, the 
distant speech is restricted in a relatively small and circular 
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region. In order to explore the usefulness of this observation, 
we wanted to conduct some experiments which adapt c0-c1 
coefficients of distant data to those of close talk microphone 
data by taking only the c0 and c1 dimensions of the MFCCs 
into account. Even though some improvement observed, the 
resulting speech recognition performance was not as effective 
as expected. It was reasoned that this is because the location of 
a frame in c0-c1 plane is mostly governed by its phoneme-
class. Finally, the results from this probe investigation suggest 
that any study which does not take the phoneme-class 
information into account might not yield effective results. 
 
Inspired by our probe analysis of the c0-c1 scatter space 
between distant speech and close talk microphone speech, we 
now turn to propose a new type of adaptation and acoustic 
modeling strategy for distant speech. This adaptation 
technique aims to make the distribution of the phoneme-
classes of distant speech similar to the close talk microphone 
acoustic model in a thirteen dimensional MFCC space. 

2. Methods: 
2.1. Determination of Phoneme Classes 
 
The major analysis here was conducted within the c0-c1 space 
by investigating the behavior close talk microphone acoustic 
model and distant data MFCCs. First by investigating the close 
talk microphone acoustic model, the English phonemes were 
divided into 5 phoneme classes based on their position in the 
c0-c1 plane. The context independent (CI) acoustic model 
which is under investigation is based on 40 phonemes 
(monophones) with 3 states per phoneme and one mixture per 
state. We define the position of a phoneme as the mean value 
of its second state (out of 3 states) in the related MFCC 
dimension. The names of the phoneme-classes are based on 
the dominant group of phonemes occupying each class. 
 
Practical Phoneme Class Determination by c0-c1 plane 
1. Class: Fricatives (most of 
the fricatives and affricatives) 

CH, F, JH, S, SH, TH, Z, ZH 

2. Class: Plosives (or stops) P, K, T, B, G, D 
3. Class: Mix (nasals and 
some others) 

DH, HH, M, N, NG, V, W 

4. Class: Silence SIL 
5. Class: Vowels (and most of 
the glides and liquids) 

AA, AE, AH, AO, AW, AY, 
EH, ER, EY, IH, IY, L, OW, 
OY, R, UH, UW, Y 

Table 1. Phoneme-Classes based on the location of 
phonemes in c0-c1 plane. 

After obtaining a scheme which divides all existing 40 
phonemes into 5 classes with the help of an acoustic model 
trained using TIMIT data [4], we labeled each frame of our 



Figure 1: Illustration of Phoneme Class-Based Adaptation (PCBA) for distant speech. (a) scatter plots of phonemes of close talk 
microphone acoustic model in and distant speech MFCCs in c0-c1 plane; (b) distribution and alignment of different phoneme classes 
for both acoustic model and distant data; (c) PCBA based mean, orientation and variance adaptation for fricatives of distant data 
towards close talk acoustic model. 
  
distant data with their corresponding phoneme-classes. In 
order to obtain very accurate phoneme-class labeling, we are 
determining the locations of phoneme-classes by using the 
synchronized close talk microphone audio streams and then 
transferring this labels to our distant microphone audio 
streams. Once we complete these labels, we can formulate 
“phoneme class based adaptation (PCBA)” solution for 
distant-based data. 
 
2.2. Phoneme-Class based Adaptation (PCBA) 
 
We employ Fig. 1 to illustrate the overall procedure for PCBA 
of distant speech. Consider Fig.1.a, where it is observed that a 
significant difference between the close talk microphone 
acoustic model and the distant captured data in the c0-c1 
plane. Here it is noted that the acoustic model is prepared after 
cepstral mean normalization, so it is positioned near the origin 
(the point of c0=0 and c1=0). The speech features from distant 
data will be also normalized around the origin during ASR 
decoding. It should be emphasized here that a major difference 
exists in the c0-c1 space based on translation, orientation and 
shape. Therefore, traditional cepstral mean normalization 
(CMN) schemes are not expected to improve speech 
recognition in a meaningful way. 
 
Since the distant data has already been labeled with phoneme-
classes, we extract 13 dimensional mean vectors and 13x13 
dimensional covariance matrices for each phoneme-class for 
the distant data. The same information is also obtained for 
close talk microphone acoustic model. Next, it is possible to 
represent the distribution and orientation of each phoneme-
class elliptically in the c0-c1 plane based on the corresponding 
mean vectors and covariance matrices as seen in Fig.2.b. Here, 
different phoneme-classes in the acoustic model are not 
overlapping or interfering with each other. However, Fig.2.b 
shows that all classes are strictly overlapping and interfering 
with each other for the distant data. This is primarily due to the 
discriminative power of MFCC features is being reduced by 
the increased distance between the speaker and microphone. 
As expected, the phonemes of distant data are therefore 
becoming indistinguishable or unpredictable because of this 
inter-phoneme-class overlap. 
 
At this point, given knowledge of the specific phoneme 
classes, we propose to create a mapping strategy for our 
distant data so that it will be reasonably adapted towards the 
close talk microphone acoustic model. This adaptation strategy 
will take each phoneme-class of the input distant test data and 

project them towards the corresponding locations of the 
phoneme-classes of the close talk microphone acoustic model. 
In the Fig.2.c, the bold ellipses correspond to the exact 
distributions (and alignments) of ‘Fricatives’ for the acoustic 
model and input distant test data. In this case, the fricatives for 
the test data (even after cepstral mean normalization) have an 
incorrect location, orientation and variance compared to the 
fricatives of the trained close talk acoustic model. As a result, 
it will be necessary to perform mean, variance and orientation 
adaptation. 
 
2.3. Using Principle Component Analysis in PCBA 
 
Next, we create the phoneme-class based adaptation using 
Principle Component Analysis (PCA). Before applying PCA, 
we form MFCC dimension pairs (i.e., c0-c1 or c2-c3) in order 
to select the planes that create the phoneme-class based 
mapping schemes. After doing this pairing, two dimensional 
mean vectors and two-by-two covariance matrices for each of 
our five phoneme-classes are obtained. Then, the eigenvectors 
of covariance matrices of each phoneme-class of acoustic 
model and test data are derived. According to PCA, the 
eigenvectors are the orientations of phoneme-classes and the 
eigenvalues are the variances of them along the corresponding 
eigenvector (orientation) [5]. 
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Here, Gi(x) represents the Gaussian distribution of the 
phoneme-class i in the c0-c1 plane, where x is a two 
dimensional vector [c0x c1x], and Σi is the covariance matrix 
of phoneme-class i. There must be two covariance matrices for 
each phoneme-class i: (1) for the close talk acoustic model, 
and (2) for the distant test data. Let umodel and vmodel be the 
eigenvectors, and λmodelU and λmodelV be the eigenvalues of 
phoneme-class i of the close talk microphone acoustic model. 
Next, let udata and vdata be the eigenvectors, and λdataU and λdataV 
be the eigenvalues of the distant test data. 
 
Next, we wish to use these eigenvectors to transform phoneme 
class i distribution of distant data to that of trained acoustic 
model in terms of orientation and variance in c0-c1 plane 
(mean adaptation will be discussed later). Note that the 
directions of the vectors umodel, vmodel, udata and vdata have been 
selected in such a way that they only allow for the least 
possible angular rotation. Assume again: (1) xdata is a two 
dimensional vector [c0x c1x] which belongs to a single distant 



 
 
Figure 2: The final appearance of c0-c1 scatter of Distant Data 
after PCBA at left (together with its appearance before PCBA 
at right). It can be observed how close to close-microphone 
acoustic model this new distribution is. 
 
data frame, and (2) that we know this frame belongs to 
phoneme class i. Now, the new phoneme-class-based adapted 
vector will be determined as shown in Eq. 2 to 6: 
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Eq. 2 and 3 are the projections of vector x to the eigenvectors 
of phoneme class i of the distant data. If we wish to conduct 
variance adaptation, we must multiply these coefficients 
according to the eigenvalues as shown below: 
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If variance adaptation is not needed, this step can be skipped. 
Alternatively, the effect of variance adaptation can be reduced 
with a desired factor. Finally the phoneme-class-based adapted 
vector will be: 
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The main result of phoneme-class based adaptation can be 
seen Fig. 2, where the c0-c1 cloud (or scatter) located at right 
belongs to the distant data, and c0-c1 scatter at the left belongs 
to the corresponding phoneme-class-based adapted version. 
The phonemes of the close talk microphone acoustic model 
which are superposed with the proposed phoneme-class-based 
adapted distribution are also illustrated. Obviously, the 
distribution of the phoneme-class-based adapted data is very 
reasonably close to the close talk microphone acoustic model 
in terms of overall shape, whereas the distribution of raw 
distant data is not. 
 
It should be noted that, even though these ideas are presented 
in the c0-c1 plane, all thirteen MFCC dimensions can be 
paired with each other in order to create new PCBA planes 
such as c2-c3, c4-c5, etc. After performing this process, a 
complete phoneme-class based adaptation scheme can be 
created for every dimension of MFCCs.  

2.4. Collaboration of PCBA with MLLR/MAP adaptations 
 
PCBA projects the distant data into a space which is wider and 
more closely associated with the close-talk acoustic model. A 
fine phoneme-level adaptation (such as MLLR/MAP 
adaptation [6]) can follow the proposed phoneme-class level 
adaption to complete a comprehensive adaptation. Therefore, 
phoneme-class based adaptation will be viewed as the 
“primary adaptation”, and phoneme-level MLLR or MAP 
adaptation will be viewed as the “secondary adaption” for 
distant data. We can summarize this idea in the ‘Distant-
Speech Adaptation Triangle’ shown in Fig. 3. First, MFCCs of 
the distant data are transformed towards the close microphone 
acoustic model, and then acoustic model is adjusted towards 
the phoneme-class-based adapted MFCCs. 
 

 
 
Figure 3: Collaboration of phoneme-class based adaptation 
(PCBA) and MLLR/MAP adaptation for distant-based data. 
 

3. Experiments 
In the experiments, a large 200-seats lecture auditorium was 
used for the all speeches. The data was obtained from a 
semester based event of Dep. of Electrical Engineering at the 
University of Texas at Dallas which is called “Senior Design 
Day Presentations”. In these events, each senior design team is 
required to present 3-5 min. oral presentation. A distant 
microphone was located approximately 4-5 meters away from 
the speaker, and the speaker for each team wore a wireless 
synchronized close talk microphone. From the Department’s 
archive of recordings, the experiments are focused on a core 
set of 10 presentations consisting of more than 40 minutes of 
data. The major challenges for this data are the acoustic 
mismatch due to distance, room reverberation and large room 
acoustics, permanent and instantaneous environmental noise. 
Because the distant microphone is located close to the 
audience, while it captures the presentations occurring 5 
meters away, it is also captures many different types of noises 
from the audience. The video recording versions of these 
presentations are also available online: http://www. 
youtube.com/user/EE1Events1UTD/ 
 
Since the proposed phoneme-class based adaptation was 
developed using context independent (CI) acoustic models, all 
experiments were performed with CI acoustic models. These 
acoustic models have only 40 phonemes (monophones), three 
states per phoneme, and one mixture per state. 
 
3.1. Theoretical Experiments 
 
In this section, the aim is to illustrate the usefulness of 
phoneme class based adaptation, assuming the perfect 
phoneme-class information for distant speech data. With this 
perfect phoneme-class knowledge, this sets an upper bound on 



performance improvement. As such, both PCBA and 
MLLR/MAP based adaptations were performed in supervised 
processes. The results are expressed in terms of average WERs 
in Table 2. The rows labeled “DISTANT” are for experiments 
with raw distant speech test data using close talk microphone 
acoustic model. “DISTANT+MLLR/MAP” represents the 
experimental results with MLLR+MAP adaptation applied to 
distant talk based test data. “PCBA” represents the proposed 
solution which adapts MFCCs from distant data towards close 
talk microphone acoustic model. “PCBA+MLLR/MAP” 
represents PCBA applied to the input test data followed by 
MLLR/MAP applied to the close-talk trained acoustic models. 
 
Explanation: WER: 
Distant Data 88.9% 
MLLR+MAP 78.8% 
PCBA 18.1% 
PCBA + (MLLR/MAP)   5.6% 
   
Table 2. The results of Theoretical Experiments which are 
conducted just to show the power of phoneme-class based 
adaptation (PCBA) 
 
3.2. Practical Experiments 
 
An Artificial Neural Network based phoneme-class decoder 
was created for use on the distant speech. These ANNs have 
60 hidden states, and since only broad classes are needed, only 
the first four MFCC (c0, c1, c2 and c3) coefficients and also 
their ∆ and ∆∆ coefficients are used as input. The ANN 
produces five channels of information as output. Each of these 
five channels corresponds to one specific phoneme-class. A 
frame which belongs to phoneme-class i should in general 
yield a score close to 1 in the ith channel and scores close to 0 
for all other channels.  
 
Due to their energy characteristics, vowels, fricatives and 
silence can be predicted up to 75-80% precision and recall for 
distant speech. However, plosives and the mix-class phonemes 
(such as nasals, etc.) are partially confused with other 
phoneme-classes because of their low or mixed energy 
characteristics, especially for this distant-based data. However, 
temporal cues can help during their detection, and so they can 
accurately be predicted up to a 50% precision and recall. 
 

 
 
Figure 4: Keyword Spotting Results for Practical experiments 
with ANN-based phoneme-class detection. 
 
In these experiments, all training and testing data was 
separated for open evaluations. The performance is illustrated 
using precision-recall curves of our KWS system which was 
developed for this distant data scenario. Fig. 4 shows the 

precision-recall plots for PCBA+MLLR/MAP, MLLR+MAP 
adaptation alone, and raw distant data.  

4. Discussion and Conclusions 
When considering the theoretical results conducted under 
perfect phoneme-class knowledge assumption, it is clear that a 
significant performance gain achieved between the proposed 
phoneme-class based adaptation (PCBA) versus MLLR/MAP 
alone. The basic idea behind PCBA is that for distant based 
speech, it is not appropriate first to conduct a global 
MLLR+MAP adaptation. Such a solution will shuffle all the 
40 phonemes in the acoustic model throughout the MFCC 
space. Instead of this scenario, it is more effective first to 
conduct a “global phoneme-class based adaptation” which 
locates each phoneme-class to the correct locations reserved 
within the close talk microphone acoustic model space. After 
this phoneme-class based adaptation, a “local” MLLR/MAP 
can be applied to the phoneme-class adapted data which 
allows for more fine-grain adjustments. Local adaptation is 
that allows the phonemes only to be arranged within relatively 
small specific areas which are determined by the phoneme-
classes. 
 
When considering results from the practical experiments based 
on KWS, again it is clear that the proposed PCBA+MLLR/ 
MAP solution achieves superior performance over MLLR/ 
MAP.  The reasoning for PCBA superiority can be explained 
as follows: phoneme-class based adaptation spreads the 
MFCCs of distant-speech into large areas (just as illustrated in 
the example c0-c1 plane) in accordance with the close talk 
acoustic model. This adaptation and any phoneme level 
adaptation (i.e., MLLR or MAP) which is applied 
subsequently will be discriminative compared to MLLR/MAP 
adaptations alone which are directly applied to MFCCs of 
distant speech. The only advancement offered by MLLR-MAP 
adaptation alone, which is directly applied to the distant data, 
is to compress all phonemes in the acoustic model space into a 
smaller region in accordance with the distant based data 
features (which in the end reduces the discriminative power of 
the acoustic model, and therefore limits much performance 
gains). 
 
Finally, the proposed PCBA method is reasonable because the 
detection of phoneme-class can be possible at sufficient 
accuracy for a distant-noisy speech, when individual phoneme 
detection is not. As the future studies, a new PCBA for 
context-dependent acoustic models can be created in 
accordance with context dependent acoustic modeling 
understandings. 
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