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Abstract

A new adaptation strategy for distant noisy spasctreated

by phoneme class based approaches for contextendept
acoustic models. Unlike the previous approacheth sag
MLLR-MAP adaptation which adapts acoustic modelthie
features, our phoneme-class based adaptation (PCiaptsa
the distant data features to our acoustic modelchwiiias
trained on close microphone TIMIT sentences. Tisemrse of
PCBA is to create a transformation strategy which enake
distribution of phoneme-classes of distant noisgesp be
similar to those of close microphone acoustic madéhirteen
dimensional MFCC space (mostly in cO-cl plane)réates a
mean, orientation and variance adaptation schemesdoh
phoneme class to compensate the mismatch. New eabapt
features, and new and improved acoustic models hwaie
produced by PCBA are outperforming those created by
MLLR-MAP adaptation for ASR and KWS. And PCBA offers
a new powerful understanding in acoustic-modelihgistant
speech.

Index Terms: phoneme class, distant noisy speech, mismatch
acoustic modeling, feature adaptation

1

Phoneme class based approaches have been previsadiyn
speech studies to address different problems bitlieved that
recognition of phoneme-classes provides speechegpsot
tasks with additional acoustic information that deenutilized
to improve the speech enhancement [1]. In theesarditudies,
a hidden-Markov model based phoneme class detection
algorithm was proposed to help for speech enhamtewfe
noisy speech [2]. In addition to speech enhancement
phoneme-class based approaches have also beemmosed
recently in emotion detection [3]. As a result, pame classes
can be used in variety of speech processing stihdiesuse of
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region. In order to explore the usefulness of thservation,
we wanted to conduct some experiments which ad@jutlc
coefficients of distant data to those of close talicrophone
data by taking only the cO and c1 dimensions ofNCCs
into account. Even though some improvement obsertresl
resulting speech recognition performance was neiffastive
as expected. It was reasoned that this is bechadedation of
a frame in c0-cl plane is mostly governed by itergme-
class. Finally, the results from this probe in\geiion suggest
that any study which does not take the phonemesclas
information into account might not yield effectikesults.

Inspired by our probe analysis of the cO-cl scasigace
between distant speech and close talk microphoeeckp we
now turn to propose a new type of adaptation aralistc
modeling strategy for distant speech. This adaptati
technique aims to make the distribution of the pme-
classes of distant speech similar to the closeratkophone
acoustic model in a thirteen dimensional MFCC space.

2. M ethods:

2.1. Determination of Phoneme Classes

The major analysis here was conducted within thelc@pace
by investigating the behavior close talk microph@@eustic
model and distant data MFCCs. First by investigatiiregclose
talk microphone acoustic model, the English phoreemere
divided into 5 phoneme classes based on theiriposit the
c0-cl plane. The context independent (Cl) acoustixiah
which is under investigation is based on 40 phorseme
(monophones) with 3 states per phoneme and oneimaiger
state. We define the position of a phoneme as thannvalue
of its second state (out of 3 states) in the rdladFCC
dimension. The names of the phoneme-classes aesl lmas
the dominant group of phonemes occupying each.class

Practical Phoneme Class Determination by c0O-c1 plane

the informative and productive characteristics dbipeme-
class based approaches.

1. Class: Fricatives (most of CH, F, JH, S, SH, TH, Z, ZH
the fricatives and affricatives|

At this point, it would be useful to consider empig

2. Class: Plosives (or stops) P,K,T,B,G,D

phoneme-classes to find a new mismatch compensation
acoustic modeling strategy for distant speects fidssible to

3. Class: Mix (nasals andDH, HH, M, N, NG, V, W
some others)

analyze the c0-c1 scatter of close talk microphepeech with

4, Class: Silence SIL

a synchronized distant microphone equivalent wheres
observed essentials differences between these tatiess.
While the close talk speech is distributed overmd area

fAA, AE, AH, AO, AW, AY,
EH, ER, EY, IH, IY, L, OW,
OY, R, UH, UW, Y

5. Class: Vowels (and most
the glides and liquids)

within a specific (umbrella-like) shape in the cDalane, the
distant speech is restricted in a relatively sraall circular
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Table 1. Phoneme-Classes based on the location of
phonemes in c0-cl plane.

After obtaining a scheme which divides all existid®
phonemes into 5 classes with the help of an aaustidel
trained using TIMIT data [4], we labeled each framf@ur
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Figure 1: lllustration of Phoneme Class-Based Adapta(PCBA) for distant speech. (a) scatter plotplbnemes of close talk
microphone acoustic model in and distant speech MRE@E€8-c1 plane; (b) distribution and alignmenddferent phoneme classes

for both acoustic model and distant data; (c) PCBsetdamean,
towards close talk acoustic model.

distant data with their corresponding phoneme-ekassn
order to obtain very accurate phoneme-class ladpelire are
determining the locations of phoneme-classes bygusine
synchronized close talk microphone audio streants then
transferring this labels to our distant microphoaadio
streams. Once we complete these labels, we canulaten
“phoneme class based adaptation (PCBA)” solution for
distant-based data.

2.2. Phoneme-Class based Adaptation (PCBA)

We employ Fig. 1 to illustrate the overall procezltor PCBA
of distant speech. Consider Fig.1.a, where it ienlesl that a
significant difference between the close talk mptrone
acoustic model and the distant captured data incthel
plane. Here it is noted that the acoustic modptépared after
cepstral mean normalization, so it is positionedrrike origin
(the point of c0=0 and c1=0). The speech featums flistant
data will be also normalized around the origin dgriASR
decoding. It should be emphasized here that a ndéference
exists in the c0-c1l space based on translatioantation and
shape. Therefore, traditional cepstral mean nomakidin
(CMN) schemes are not expected to improve speech
recognition in a meaningful way.

Since the distant data has already been labelédplibneme-
classes, we extract 13 dimensional mean vectors18md3
dimensional covariance matrices for each phonem&scfor
the distant data. The same information is also inéta for
close talk microphone acoustic model. Next, it ésgible to
represent the distribution and orientation of epbioneme-
class elliptically in the cO-c1 plane based ondbeesponding
mean vectors and covariance matrices as seen.@Iiglere,
different phoneme-classes in the acoustic model rave
overlapping or interfering with each other. HowevEig.2.b
shows that all classes are strictly overlapping ierfering
with each other for the distant data. This is primalue to the
discriminative power of MFCC features is being reduby
the increased distance between the speaker andphame.
As expected, the phonemes of distant data are foinere
becoming indistinguishable or unpredictable becafsthis
inter-phoneme-class overlap.

At this point, given knowledge of the specific plkome
classes, we propose to create a mapping strategyup
distant data so that it will be reasonably adaptedhrds the
close talk microphone acoustic model. This adaptatrategy
will take each phoneme-class of the input distast tlata and

orientation and variance adaptationricatives of distant data

project them towards the corresponding locations thaf
phoneme-classes of the close talk microphone acausidel.
In the Fig.2.c, the bold ellipses correspond to thect
distributions (and alignments) of ‘Fricatives’ ftire acoustic
model and input distant test data. In this casefribatives for
the test data (even after cepstral mean normalizatiave an
incorrect location, orientation and variance cormegdato the
fricatives of the trained close talk acoustic mode a result,
it will be necessary to perform mean, variance anentation
adaptation.

2.3. Using Principle Component Analysisin PCBA

Next, we create the phoneme-class based adaptasiomg
Principle Component Analysis (PCA). Before applying RCA
we form MFCC dimension pairs (i.e., cO-c1 or c2-eBpider
to select the planes that create the phoneme-dlassd
mapping schemes. After doing this pairing, two disienal
mean vectors and two-by-two covariance matricesefmh of
our five phoneme-classes are obtained. Then, theneéctors
of covariance matrices of each phoneme-class ofistico
model and test data are derived. According to PG, t
eigenvectors are the orientations of phoneme-daasd the
eigenvalues are the variances of them along thesonding
eigenvector (orientation) [5].
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Here, G(x) represents the Gaussian distribution of the
phoneme-class in the c0-cl plane, whera is a two
dimensional vector [¢0cl], andZ; is the covariance matrix
of phoneme-class There must be two covariance matrices for
each phoneme-class (1) for the close talk acoustic model,
and (2) for the distant test data. Lefds and Vioqel be the
eigenvectors, andyogeiy @and Amogerv b€ the eigenvalues of
phoneme-clasksof the close talk microphone acoustic model.
Next, let Yaaand Vaa be the eigenvectors, afghiay andigaay

be the eigenvalues of the distant test data.

Gi(X) =

@)

exp (—% #7277

Next, we wish to use these eigenvectors to tramsfitoneme
class i distribution of distant data to that ofineal acoustic
model in terms of orientation and variance in cOpidne
(mean adaptation will be discussed later). Notet tthe
directions of the vectors\dges Vimodes Ugata @Nd Viara have been
selected in such a way that they only allow for thast
possible angular rotation. Assume again: (3}.%s a two
dimensional vector [g0cl,] which belongs to a single distant



.- €0-c1 scatter of Distant Data after PCBA

Figure 2: The final appearance of c0-cl scattéisfant Data
after PCBA at left (together with its appearance tefCBA
at right). It can be observed how close to closeropihone
acoustic model this new distribution is.

data frame, and (2) that we know this frame belotms
phoneme class i. Now, the new phoneme-class-baisgutenl
vector will be determined as shown in Eq. 2 to 6:

coef faatau = fdata . ﬁdata )

coef faatay = fdata . 1_J)data 3

Eq. 2 and 3 are the projections of vector x todigenvectors
of phoneme class i of the distant data. If we wisitonduct
variance adaptation, we must multiply these coieffits
according to the eigenvalues as shown below:

coef finodets = Co€f faatau Y, Amodelu/Adatau 4)
coef frnodetv = co€f faatav 4/ Amodelv/Adatav )

If variance adaptation is not needed, this stepb@askipped.
Alternatively, the effect of variance adaptatiom & reduced
with a desired factor. Finally the phoneme-classedeadapted
vector will be:

J_C)Adapted = Coeffmodelu -ﬁmodel + Coeffmodelv-ﬁmodel (6)

The main result of phoneme-class based adaptatonbe
seen Fig. 2, where the c0-cl cloud (or scatte@témt at right
belongs to the distant data, and c0-c1 scattéreaett belongs
to the corresponding phoneme-class-based adaptesibve
The phonemes of the close talk microphone acoustidel
which are superposed with the proposed phonems-blsed
adapted distribution are also illustrated. Obvigusthe
distribution of the phoneme-class-based adapted idavery
reasonably close to the close talk microphone dmoowdel
in terms of overall shape, whereas the distributidnraw
distant data is not.

It should be noted that, even though these ideapm@sented
in the c0-cl plane, all thirteen MFCC dimensions ten
paired with each other in order to create new PCBangd
such as c2-c3, c4-c5, etc. After performing thiscpss, a
complete phoneme-class based adaptation schemebe&an
created for every dimension of MFCCs.

2.4. Collaboration of PCBA with MLLR/M AP adaptations

PCBA projects the distant data into a space whietidsr and
more closely associated with the close-talk acoustidel. A
fine phoneme-level adaptation (such as MLLR/MAP
adaptation [6]) can follow the proposed phonemsslavel
adaption to complete a comprehensive adaptatioarefdre,
phoneme-class based adaptation will be viewed a&s th
“primary adaptation”, and phoneme-level MLLR or MAP
adaptation will be viewed as the “secondary adaptior
distant data. We can summarize this idea in thest&bit-
Speech Adaptation Triangle’ shown in Fig. 3. FIMECCs of
the distant data are transformed towards the gluseophone
acoustic model, and then acoustic model is adjustegrds
the phoneme-class-based adapted MFCCs.

[ADAPTAT.'ON TRIANGLE FOR DISTANT SPEECH]
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Figure 3: Collaboration of phoneme-class based atapt
(PCBA) and MLLR/MAP adaptation for distant-based data.

3. Experiments

In the experiments, a large 200-seats lecture aigtiht was
used for the all speeches. The data was obtainmu &
semester based event of Dep. of Electrical Engingext the
University of Texas at Dallas which is called “SamDesign
Day Presentations”. In these events, each sengigréeam is
required to present 3-5 min. oral presentation. istact
microphone was located approximately 4-5 metersydean

the speaker, and the speaker for each team worgetess
synchronized close talk microphone. From the Depant's

archive of recordings, the experiments are focusea core
set of 10 presentations consisting of more tham#ttutes of
data. The major challenges for this data are theusiic
mismatch due to distance, room reverberation arge leoom
acoustics, permanent and instantaneous environmeoitse.

Because the distant microphone is located close hto
audience, while it captures the presentations oic@ur5

meters away, it is also captures many differeneésypf noises
from the audience. The video recording versionsthase
presentations are also available online: http://www
youtube.com/user/EE1Events1UTD/

—

Since the proposed phoneme-class based adaptatien w
developed using context independent (CI) acoustidaiso all
experiments were performed with Cl acoustic modElsese
acoustic models have only 40 phonemes (monophotiesk
states per phoneme, and one mixture per state.

3.1. Theoretical Experiments

In this section, the aim is to illustrate the u$efss of
phoneme class based adaptation, assuming the tperfec
phoneme-class information for distant speech dafi¢h this
perfect phoneme-class knowledge, this sets an upperd on



performance improvement. As such, both PCBA and
MLLR/MAP based adaptations were performed in supgexvi
processes. The results are expressed in termerHgy WERS
in Table 2. The rows labeled “DISTANT” are for exipeents
with raw distant speech test data using close rratkophone
acoustic model. “DISTANT+MLLR/MAP” represents the
experimental results with MLLR+MAP adaptation apgplito
distant talk based test data. “PCBA” representspifoposed
solution which adapts MFCCs from distant data towatdse
talk microphone acoustic model. “PCBA+MLLR/MAP”
represents PCBA applied to the input test data fatbvy
MLLR/MAP applied to the close-talk trained acoustiodels.

Explanation: WER:
Distant Data 88.9%
MLLR+MAP 78.8%
PCBA 18.1%
PCBA + (MLLR/MAP) 5.6%

Table 2. The results of Theoretical Experimentscivhare
conducted just to show the power of phoneme-classed
adaptation (PCBA)

3.2. Practical Experiments

An Atrtificial Neural Network based phoneme-classatier
was created for use on the distant speech. Thed¢sAnve
60 hidden states, and since only broad classeseaded, only
the first four MFCC (cO, c1, c2 and c3) coefficieatsd also
their A and AA coefficients are used as input. The ANN
produces five channels of information as outputh&af these
five channels corresponds to one specific phondasscA
frame which belongs to phoneme-classhould in general
yield a score close to 1 in thith channel and scores close to 0
for all other channels.

Due to their energy characteristics, vowels, fiieg and
silence can be predicted up to 75-80% precisionraadll for
distant speech. However, plosives and the mix-gassmiemes
(such as nasals, etc.) are partially confused vather
phoneme-classes because of their low or mixed gnerg
characteristics, especially for this distant-badath. However,
temporal cues can help during their detection, smthey can
accurately be predicted up to a 50% precision andll:
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Figure 4: Keyword Spotting Results for Practical exxments
with ANN-based phoneme-class detection.

In these experiments, all training and testing daias
separated for open evaluations. The performantkissrated
using precision-recall curves of our KWS systemalhivas
developed for this distant data scenario. Fig. dwshthe

precision-recall plots for PCBA+MLLR/MAP, MLLR+MAP
adaptation alone, and raw distant data.

4. Discussion and Conclusions

When considering the theoretical results conduateder
perfect phoneme-class knowledge assumption, lear that a
significant performance gain achieved between tlupgsed
phoneme-class based adaptation (PCBA) versus MLLR/MAP
alone. The basic idea behind PCBA is that for diskased
speech, it is not appropriate first to conduct abgl
MLLR+MAP adaptation. Such a solution will shuffldl the
40 phonemes in the acoustic model throughout theC®IF
space. Instead of this scenario, it is more effecfirst to
conduct a “global phoneme-class based adaptatiamthwy
locates each phoneme-class to the correct locateserved
within the close talk microphone acoustic modelcspafter
this phoneme-class based adaptation, a “local” MIM/&P
can be applied to the phoneme-class adapted dateh wh
allows for more fine-grain adjustments. Local ad#iph is
that allows the phonemes only to be arranged witsliztively
small specific areas which are determined by thenpme-
classes.

When considering results from the practical experita based
on KWS, again it is clear that the proposed PCBA+MLLR/
MAP solution achieves superior performance over RLL
MAP. The reasoning for PCBA superiority can be exyld
as follows: phoneme-class based adaptation sprefaels
MFCCs of distant-speech into large areas (just astitited in
the example c0-c1 plane) in accordance with theeclalk
acoustic model. This adaptation and any phonemel lev
adaptation (i.e., MLLR or MAP) which is applied
subsequently will be discriminative compared to NRIMAP
adaptations alone which are directly applied to MFQEs
distant speech. The only advancement offered by RIMAP
adaptation alone, which is directly applied to th&tant data,

is to compress all phonemes in the acoustic mquilesinto a
smaller region in accordance with the distant badath
features (which in the end reduces the discrimmegbiower of
the acoustic model, and therefore limits much perémce
gains).

Finally, the proposed PCBA method is reasonable Isecthe
detection of phoneme-class can be possible at caiffi
accuracy for a distant-noisy speech, when indivighaneme
detection is not. As the future studies, a new PCBA f
context-dependent acoustic models can be created in
accordance with context dependent acoustic modeling
understandings.
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