INTERSPEECH 2013

Acoustic Factor Analysis based Universal Background Model for Robust
Speaker Verification in Noise

Taufig Hasan, John H. L. Hansen*

Center for Robust Speech Systems (CRSS)
Erik Jonsson School of Engineering & Computer Science
The University of Texas at Dallas (UTD), Richardson, TX 75080-3021, USA

{Taufiq.Hasan, John.Hansen}@utdallas.edu

Abstract

The Universal Background Model (UBM) is known as a speaker
independent Gaussian Mixture Model (GMM) trained on a large
speech corpus containing many speakers’ recordings in various
conditions. When noisy test data is involved, UBM trained on
clean data is generally not optimal. Using noisy data for UBM
training, however, creates a bias towards the specific develop-
ment noise samples resulting in degraded speaker recognition
performance in unseen noise types. In this study, we utilize
an Acoustic Factor Analysis (AFA) based UBM that iteratively
learns the dominant feature sub-spaces in each mixture compo-
nent, resulting in a more robust model. We explore two variants
of the model: one with an isotropic and the other with a diag-
onal residual noise. The Maximum-Likelihood (ML) training
formulations of the models are provided. The latent variables
of the model, termed acoustic factors, are used as features to
train the second stage of factor analysis parameters, i.e., the tra-
ditional i-vector extractor. Experiments performed on the 2012
National Institute of Standards and Technology (NIST) Speaker
Recognition Evaluation (SRE) indicate the effectiveness of the
proposed strategy in both clean and noisy conditions.

Index Terms: speaker verification, NIST SRE 2012, noisy data,
acoustic factor analysis

1. Introduction

Gaussian Mixture Models (GMM) have become the standard
technique for modeling acoustic features for speaker recogni-
tion over the last decade. From the classical GMM-UBM sys-
tem [1] to the recent i-vector system [2], almost all the ap-
proaches depend on the GMM based back-ground model that
is expected to cover the entire acoustic space. To deal with
noisy and channel degraded conditions, most effective tech-
niques operate on the utterance models, including GMM super-
vectors [3] and various factor analysis schemes built in this do-
main [4, 5], and i-vectors with Probabilistic Linear Discrim-
inant Analysis (PLDA) based classifiers along with various
pre-processing techniques [6—8]. Robust feature development
[9-11], enhancement [12—15], effective front-end compensation
methods [16-18] and score domain techniques have also been
considered [19, 20] for mismatch compensation. Many tech-
niques evolved and have been replaced by new variants over the
last decade, but for short-term spectrum based systems, a GMM
has almost always been used as the background model.
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The UBM is defined as a speaker independent model
trained on a large data-set representing many acoustic condi-
tions [1]. Previously in [21], we pointed out two important
aspects of UBM training for robust speaker recognition: data
variability and balancing. The more diverse the UBM dataset
is, the more likely it becomes for an unseen test utterance fea-
tures to find appropriate mixture components. Data balancing is
important so that the UBM is not dominated by specific type of
recordings. If clean utterances are used for training the UBM,
the test features frames may not align well with the different
mixture components (i.e., the posterior probability of a mixture
component given an acoustic feature frame may be too low).
This in turn will cause the zero and first order Baum-Welch
statistics collected using this UBM to be unreliable for i-vector
extraction [2]. This problem may be alleviated by using some
noisy data in the UBM training itself. However, this can cause
the system to be biased towards those specific noise samples in-
volved in UBM training. Thus, a reasonable solution should be
to train the UBM using a modeling scheme that learns the be-
havior of noisy speech data from the development set, but does
not over-train towards the development noise samples.

In our recent studies [22-24], we proposed the Acoustic
Factor Analysis (AFA) scheme that operates on different mix-
tures of the UBM as a feature transformation. The princi-
pal motivation of this approach was the assumption that tradi-
tional acoustic features reside in a lower dimensional subspace,
and therefore, the GMM mean super-vector representation of
an utterance contain redundancies. The technique operated on
the first order Baum-Welch statistics in each mixture with a
transformation matrix, effectively reducing the feature dimen-
sion within the model. Integrated with an i-vector system, this
method led way towards a two-stage factor analysis scheme for
speaker recognition.

In this paper, we proceed further with the AFA concept by
completely replacing the traditional GMM-UBM with a Mix-
ture of Factor Analyzers (MFA) [25, 26] model and propose
an i-vector extraction strategy that utilizes the statistics of the
model’s hidden variables, termed the acoustic factors. This
model is somewhat similar in nature to sub-space GMMs pro-
posed for speech recognition [27]. The proposed AFA-UBM
model is trained using an Expectation-Maximization (EM) al-
gorithm, which iteratively removes the relatively less important
sub-spaces in each mixture component, in contrast to our pre-
vious approach [22] where the AFA parameters were extracted
from a full-covariance GMM-UBM.
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Figure 1: Probabilistic graphical model of a Mixture of Factor Analyzer
(MFA) model for acoustic features. The box on the right denotes a
‘plate’ representing a dataset of /N independent observations of acoustic
features x,,. Here, y, are the hidden variables, or acoustic factors. The
box on the left represent the parameters of the g-th model component
out of a total of M mixtures.

2. Acoustic Factor Analysis

In this section, we describe the proposed model of acoustic fea-
tures, discuss its formulation and EM-training steps, and its in-
tegration with an i-vector based speaker verification system.

2.1. Formulation

Let x € R? represent the acoustic feature vectors and X =
{Xn|n = 1--- N} denote the collection of development data.
Using a standard factor analysis model [25,26], the feature vec-
tor x can be represented by,

ey

Here, W is a d X q factor loading matrix that represents ¢ <
d dominant directions in the feature space, and w is the mean
vector. Following our terminology in [22-24], we denote the
latent variable vector or latent factors y ~ A (0, ), as acoustic
factors, which is of dimension g X 1. The remaining variability
in the data is modeled by the noise component € ~ A(0, ¥).
In this model, the feature vectors are normally distributed such
that, x ~ N (u, & + WWT),

Naturally, acoustic features extracted from speech data con-
taining many different channel/noise variations are better mod-
eled using clusters in the feature space. Thus, we utilize a mix-
ture of AFA models [22] similar to a GMM-UBM. The proba-
bility density function of x,, is given by:

x=Wy+pu-+e

M M
p(xn) = Zﬂgp(xn|g) = ZﬂgN(xnmga Cy), @
g=1 g=1

where 7 is the weight of the g-th mixture component, M is the
total number of mixtures, and the model covariance matrix in
each mixture is given by:

Cy=V,+W,W,. A3)

A graphical representation of this model is shown in Fig. 1. In
our previous studies [22], we assumed e to be isotropic, that is
v, = O'SI, where O'g denotes the average noise power [28].
Furthermore, the AFA model parameters were derived from a
pre-trained full-covariance UBM instead of direct training from
the available data. In this paper, we obtain the Maximum-
Likelihood (ML) formulations of the mixture of AFA model
assuming W to be isotropic and diagonal. This model, trained
similar to a GMM, essentially replaces the UBM model of the
speaker verification system and leads to a new way of extracting
the i-vectors.
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2.2. Isotropic Residual Noise

In this scenario, we assume that the noise covariance matrix in
each mixture ¥, = 031, is isotropic. This leads to the standard
PPCA model as derived in [28]. The EM algorithm procedure
for mixture of PPCA model is as follows. In the first step, the
following parameters are computed given the initial/old param-
eter estimates:

p(Xnlg) 7y
ng = Xn) = — 45—, “4)
Yng p(g]xn) (%)
1 N
Ty = 3 Do )
n=1
~ ZN71’Y7qun
fg = sl 97T and (6)
25:17719
1 N
S, = — Vg (Xn — fig)(Xn — fig)".  (7)
g Nﬂ'g nzz:l 9( g ( g)

Here, 7,4 and [i, are the new estimate for the weights and mean
vectors, respectively. The new values of the factor loading ma-
trix and noise variance, W, and &3, can be obtained by:

W,

2
Og

SyWy (oI + M, "W, S, W,) "and (8)

1 4~
—tr(Sy — Sy WM, 'W7{), )

d

where M, = cr;I + WgTWg. The posterior distribution of the
acoustic factors for the g-th mixture is given by:

P(ynl%n, g) =N (anMglng(Xn — Hg); UgM?) :
(10)
We denote this model by ML-AFAs,.

2.3. Diagonal Residual Noise

In this case, we assume that the noise covariance ¥, is diag-
onal. Here, the ¢ dominant directions represented by the fac-
tor loading matrix W, no longer contains the principal compo-
nents. The update equations for this AFA model can be obtained
through maximization of the complete data likelihood function
in a similar way as in the PPCA case [28]. The new values, 7
and fi4, are obtained through equations (4)-(7) as described in
the previous section. Update equations for Wg and ¥, can be
shown to take the following form:

_ —1
W, = S,u W, (I+ M, 'We, 'S, 9, 'W, )(i1)
¥, = diag (S, S,¥; 'W,M,'W]), (12)
where ,

M, =1, + W, ¥ 'W,. (13)

In this case, the posterior distribution of the acoustic factors for
the g-th mixture is given by:

P(ynlxn 9) = N (ya My "WI 0 (50 = 1), M ).
(14
We denote this variant of the model as ML-AFAgjag.-

2.4. I-vector extraction

Conventionally, the i-vectors are extracted from the zero and
first order statistics calculated from the features with respect



to the GMM-UBM model. Now, as we replace the GMM-
UBM model with the AFA-UBM model (isotropic/diagonal),
we could still proceed as before by computing the statistics in
the usual way assuming the model as a GMM with parameters
A ={mg, g, Cg}. In this case, the model covariance matrices
C, are restricted in some way depending on the type model
used (isotropic/diagonal). In our initial experiments, we did
not observe much difference in performance using this approach
compared to a full-covariance GMM-UBM. Here, we propose
to model the acoustic factors y, in each mixtures as features
for the next stage of factor analyzer (i.e., the i-vector extractor).
This is motivated by the assumption that the variation in the
acoustic factors contain the most important speaker dependent
variability. As an added benefit, the dimension of the statistics
are of a lower dimension, leading to a reduction in computa-
tional resources in the i-vector extraction process.

Proceeding with the above method, for an utterance s, the
zero order statistics is extracted as:

Ns(g) = Z’Yg(n)y

nes

15)

Here, v4(n) is extracted as in (4) utilizing the model parameters
A. Conventionally, the first order statistics are extracted as:

Fi(g) =) ve(n)xn.

nes

For the proposed models, the first order statistics are obtained
from the posterior mean of the acoustic factors (yn|Xn, g) ob-
tained from the distributions in (10) and (14):

Z'}’g(n)<yn‘xmg> = Z'Yg(n)A;(xn — ig)

nes

A} [Fa(g) — Na(g)g] = AJFo(g),

F.(9)

nes

where AZ = M;lng for the isotropic model (ML-AFA;g,)
and My 'W{ W " for the diagonal model (ML-AFAqiag).
Also, F,(g) represents the centralized first order statistics com-
puted using the model parameters A. The rest of the procedure
for the i-vector extractor training follows the same principles
as outlined in [22]. However, when the acoustic factors y,, are
used as features for the i-vector extractor, the mean vector and
covariance matrix of the UBM is set to zero and identity, re-
spectively, following the original definition of y,, in (1).

3. System Description

An i-vector system [2] with a Gaussian Probabilistic Linear Dis-
criminant Analysis (PLDA) [8] classifier, similar to our NIST
SRE 2012 submission [29], is used as the baseline system. Spe-
cific blocks of the system implementation and details of the pro-
posed scheme are described below.

3.1. Voice activity detection (VAD)

The central VAD algorithm closely follows the method in [30],
available through the open-source Voicebox toolkit [31]. For
two channel recordings, VAD is performed on both channels,
and audio segments are removed from the target speaker’s chan-
nel if speech detected in the interviewee/other speaker’s chan-
nel. For the target speaker’s channel, the Signal-to-Noise Ra-
tio (SNR) is estimated using a 2-mixture GMM trained on seg-
ment energy. If the SNR is less than 18 dB, the audio channel
is enhanced using a spectral subtraction technique [12] before
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VAD. Also, the noise power is estimated using methods out-
lined in [32]. Note that the enhanced utterances are only used
for VAD, not for feature extraction.

3.2. Feature Extraction

We extract 60 dimensional Mel-Frequency Cepstral Coeffi-
cients (MFCC) using the CTUcopy toolkit [33]. At first, digital
zeros are replaced by a uniformly distributed noise floor having
a mean zero and amplitude 1.7575. For segmentation, a 25 ms
window with 10 ms frame shift is used. A 24-channel Mel-
spaced filterbank is used and 19 static coefficients are retained.
The 60 dimensional features are obtained by including log en-
ergy, delta and acceleration parameters. Finally, the features are
processed through Cepstral Mean and Variance Normalization
(CMVN) utilizing a 3-sec sliding window.

3.3. UBM and AFA Model Training

A gender dependent 1024-mixture GMM-UBM with diagonal
covariance' matrices is used for the baseline system. The pro-
posed AFA-UBM models are trained using the isotropic and di-
agonal assumptions following the procedures described in Sec.
2.2 and 2.3. Mixture covariance matrix values are floored to
107° for the baseline GMM-UBM model.

The UBM models are trained on telephone, microphone and
interview type utterances selected from SRE’04-08 enrollment
data, Switchboard-II Phase 2 and 3, and Switchboard Cellular
Part 1 and 2. Artificially generated noisy files containing Heat-
ing, Ventilation and Air Conditioning (HVAC) and crowd noise
types, and SRE-12 enrollment speaker data are also included in
the UBM. The noisy file generation process is discussed in [29].
The UBM utterances are approximately balanced across: (i)
clean vs. noisy, (ii) telephone vs. interview/microphone, and
(iii) known vs. unknown speakers.

For the EM training, initial four iterations per mixture are
gradually increased to 15 for higher order mixtures. We em-
ployed data sub-sampling for fast UBM training [21,34] to per-
form the experiments. For each 30 frames that are skipped, 3
consecutive frames are selected, resulting in 10% of the original
dataset. In this way, the correlation among successive frames
are retained. For the proposed AFA models, we use the acous-
tic factor dimensions ¢ = 42, 48 and 54 for comparison.

3.4. I-vector Extractor Training

For training the i-vector extractor, the UBM training dataset
with additional data are used, again with both clean and noisy
versions. This corresponds to what we used in our SRE-12 sys-
tem [35]. Here, a 600-dimensional i-vector extractor is trained
using 5 EM iterations. The i-vectors are first centralized and
then length normalized using radial Gaussianization [8]. Linear
Discriminant Analysis (LDA) projection is performed to reduce
the i-vector dimension to 150 before the PLDA scoring. LDA
is trained on the same data as the i-vector extractor.

3.5. PLDA classifier

In this study, we use a Gaussian PLDA model with a full-
covariance residual noise for session variability compensation
and scoring [8]. According to this model, an R dimensional

!In our initial experiments, full-covariance GMMs performed worse
than the diagonal models for noisy data. Thus we use the diagonal
covariance model as the baseline.



Table 1: Performance comparison between baseline and pro-
posed systems in NIST SRE 2012 extended trials condition-1

Table 4: Performance comparison between baseline and pro-
posed systems in NIST SRE 2012 extended trials condition-4

System %EER minCprimary ~ Cprimary System %EER minCprimary  Cprimary

Baseline 3.3109 0.2684 0.3454 Baseline 3.6459 0.3013 0.4556
Method q Absolute/%relative performance Method q Absolute/%relative performance

42 | 3.370/-1.8 0.248/7.5 0.345/0.1 42 | 3.512/3.7 0.289/3.9 0.455/0.2

ML-AFAis, | 48 | 2.835/14.4 0.244/9.1 0.344/0.3 ML-AFAis, | 48 | 3.508/3.8 0.298/1.0 0.452/0.7

54 | 2.931/11.5 0.240/10.6 0.333/3.6 54 | 3.557/2.4 0.302/-0.3 0.461/-1.1

42 | 3.031/8.5 0.224/16.7 0.328/5.0 42 | 3.560/2.4 0.289/4.0 0.460/-1.0

ML-AFAdiae | 48 | 3.078/7.0 0.245/8.6 0.348/-0.7 ML-AFAdiae | 48 | 3.575/2.0 0.282/6.4 0.450/1.1

54 | 3.019/8.8 0.239/10.9 0.335/3.0 54 | 3.295/9.6 0.280/7.2 0.449/1.6

Table 2: Performance comparison between baseline and pro-
posed systems in NIST SRE 2012 extended trials condition-2

Table 5: Performance comparison between baseline and pro-
posed systems in NIST SRE 2012 extended trials condition-5

System %EER minCoprimary ~ Cprimary System %EER minChprimary ~ Cprimary

Baseline 3.0771 0.3272 0.5580 Baseline 3.5350 0.3329 0.6029
Method q Absolute/%relative performance Method q Absolute/%relative performance

42 | 2.903/5.7 0.316/3.4 0.552/1.0 42 | 3.474/1.7 0.322/3.3 0.593/1.7

ML-AFAis, | 48 | 2.725/11.4 0.304/7.2 0.540/3.2 ML-AFA;s, | 48 | 3.154/10.8 0.300/10.0 0.582/3.5

54 | 2.849/7.4 0.298/9.0 0.541/3.0 54 | 3.441/2.7 0.292/12.2 0.585/3.1

42 | 2.931/4.8 0.306/6.4 0.546/2.1 42 | 3.395/4.0 0.309/7.3 0.594/1.5

ML-AFAgiag | 48 | 2.905/5.6 0.301/7.9 0.540/3.3 ML-AFAgiag | 48 | 3.477/1.6 0.305/8.4 0.585/3.0

54 | 2.737/11.0  0.292/10.8 0.543/2.8 54 | 3.090/12.6  0.295/11.4 0.587/2.6

Table 3: Performance comparison between baseline and pro-
posed systems in NIST SRE 2012 extended trials condition-3

System %EER minCprimary Oprimary

Baseline 3.1564 0.1317 0.1435
Method q Absolute/%relative performance

42 | 3.190/-1.1 0.123/6.4 0.137/4.8

ML-AFAis, | 48 | 3.258/-3.2 0.115/13.1 0.129/10.2

54 | 3.212/-1.8 0.116/12.1 0.127/11.4

42 | 3.279/-3.9 0.108/17.8 0.129/9.8

ML-AFAgiag | 48 | 3.302/-4.6 0.130/1.2 0.149/-4.1

54 | 3.173/-0.5 0.114/13.4 0.130/9.5

i-vector w, extracted from an utterance s is expressed as:
ws = wo + ®5 +n. (16)

Here, wy is an R x 1 speaker independent mean vector, ® is the
R x NEgv low rank matrix representing the speaker dependent
basis functions or eigenvoices, 3 ~ N(0,I) is an Ngy x 1
hidden variable, and n is the R X 1 random vector representing
the full covariance residual noise. The data used for i-vector
extractor training are utilized to train this PLDA model. No
short duration utterances are included in PLDA training as was
the case in [35]. The i-vectors obtained from each enrollment
speaker are first averaged so that one i-vector per speaker is
obtained. The scoring is then performed as described in [36].

4. Results

The experiments performed in this study are based on the
male portion of the NIST SRE 2012 extended trials (containing
27932667). We use the SRE-12 detection cost functions (DCF),
Cprimaryy mincprimary(USing Pknown = 05) [37] and % Equal
Error Rate (EER) for evaluating the systems. Tables 1-5 sum-
marize the results obtained from the baseline and proposed sys-
tems in five SRE-12 common test conditions defined as [37]:
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1) clean interview speech, 2) clean phone call speech, 3) artifi-
cially noised interview speech, 4) artificially noised phone call
speech, and 5) phone call speech collected in a noisy environ-
ment. The artificially added noise samples are of three types: 1)
crowd noise, ii) HVAC noise, and iii) single speaker noise. We
use multiple utterances in their clean and noisy versions (using
in-house noise samples) for speaker enrollment.

From Tables 1-5, it is clear that the proposed technique of
utilizing an AFA-UBM instead of a conventional GMM-UBM
provides more robust speaker recognition performance across
conditions including clean and noisy test scenarios. Except for
condition-3, that is noisy interview case, the proposed methods
provide superior performance compared to the baseline system
in all three performance metrics. Generally, relative improve-
ments in the order of 5 — 10% is obtained using the proposed
methods. However, a single model parameter (acoustic factor
dimension ¢) or model type (isotropic or diagonal) does not
always provide the best result in all conditions. Nevertheless,
these results are encouraging and point towards the need for
further research and development in this direction.

5. Conclusions

In this study, we have proposed an acoustic factor analysis
based mixture model as an alternative to a conventional GMM-
UBM for speaker verification in noise. The proposed model
was shown to be robust when trained with a combination of
clean and noisy data, due to learning only a limited number of
sub-spaces in different mixture components. Two variants of
the proposed model was studied, with an isotropic and diago-
nal residual noise assumption. The method was integrated with
a conventional i-vector system where the zero and first order
statistics of the so called acoustic factors were used instead of
the conventional Baum-Welch statistics. Experimental results
obtained from the clean and noisy test conditions of the NIST
SRE 2012 extended trials demonstrate the effectiveness of the
proposed approach.
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