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Abstract
In this study, we expand the question of ”what is the intrinsic
dimensionality of speech?” to ”how does the intrinsic dimen-
sionality of speech change from speaking to singing?”. Our fo-
cus is on dimensionality of the vowel space regarding spectral
features, which is important in acoustic modeling applications.
Locality Preserving Projection (LPP) is applied for dimension-
ality reduction of the spectral feature vectors, and vowel classi-
fication performance is studied in low-dimensional subspaces.
Performance analysis of singing and speaking vowel classifica-
tion based on reducing the dimension shows that compared to
speaking, a higher number of dimensions is required for effec-
tive representation of singing vowels. The results are also ex-
plained in terms of differences in the formant spaces of singing
and speaking, and vowel classification performance is analyzed
based on feature vectors consisting of formant frequencies. The
formant analysis results are shown to be consistent with LPP
dimensionality analysis, which verifies the inherent dimension-
ality increase of the vowel space from speaking to singing.
Index Terms: singing, dimensionality analysis, locality pre-
serving projections

1. Introduction
Most speech applications are based on extracting feature vec-
tors from short-time speech frames. The dimensionality of fea-
ture vectors varies for different applications. However, based on
physiological constraints of speech production, the inherent di-
mensionality of speech is much lower than most feature vector
dimensions. This study analyzes the dimensionality of singing
speech and compares it to neutral speaking. The Locality Pre-
serving Projections (LPP) subspace learning is used to study the
underlying low-dimensional structure of singing and speaking.

Previous studies have shown that speech can efficiently be
presented by a small number of parameters [1, 2, 3]. Dimen-
sionality of speech has been analyzed, applying linear and non-
linear dimensionality reduction methods to spectral acoustic
features, such as Mel Frequency Cepstral Coefficients (MFCC)
and Perceptual Linear Prediction (PLP). Early studies [4, 5, 6]
used Principal Component Analysis (PCA) to study linearly
embedded low-dimensional manifold in the spectral feature
space, and showed that the first two PCA dimensions accounted
for most of the total variance in vowel space. They also showed
that vowel representation in the two-dimensional PCA subspace
of spectral features has a similar configuration to F2/F1 vowel
plane, and the two spaces produce comparable vowel classifi-
cation performance. Nonlinearly embedded low-dimensional
subspaces have also been studied based on applying nonlinear
manifold learning techniques [7, 8, 9].

Acoustic analysis of singing speech [10, 11, 12] indicates
the deviation of vowel space from speaking to singing. How-
ever, little if any studies have explored the difference between
intrinsic dimensionality of singing and speaking vowel spaces.
We consider LPP dimensionality reduction [13] to study dimen-
sionality of the vowel space for singing and compare it to speak-
ing. LPP is a linear approximation of nonlinear manifold learn-
ing technique: Laplacian Eigenmap [14]. While PCA preserves
the global structure of data, LPP preserves the neighborhood
structure. The advantage of LPP over traditional PCA is that it
can model nonlinear embedded manifold of data by preserving
local relations among high-dimensional data points. In addi-
tion, though LPP shares many properties of nonlinear manifold
learning techniques, unlike nonlinear methods that are defined
just on the training data points, LPP is defined everywhere in
ambient space and can be applied to unseen data.

In this study, the dimensionality of vowel spectra is ana-
lyzed and compared for singing and speaking based on vowel
classification results in LPP subspaces of PLP feature vectors.
It is shown that singing vowels require a higher number of di-
mensions than speaking to be efficiently represented. Further-
more, the formant space of singing and speaking vowels are
compared, and vowel classification performances are presented
based on formant frequency feature vectors. LPP dimensional-
ity analysis of singing vowel space is shown to correlate with
the formant space dimensionality, which verifies an increase in
dimensionality of singing compared to speaking.

This study is based on a singing database, which includes
singing and reading of lyrics for each speaker. Therefore, the
phonetic contents of singing and speaking are the same. With
the same speakers and the same text, the only changing factor is
speaking style, and singing dimensionality can reliably be com-
pared to speaking. The database is explained in more detail in
the next section. LPP dimensionality reduction is described in
Sec. 3. Sec. 4 represents vowel classification results in LPP
subspaces of spectral feature vectors and dimensionality anal-
ysis. Formant analysis and vowel classification based on for-
mant frequencies is presented in Sec. 5. Finally, conclusions
are drawn in Sec. 6.

2. Database
Our experiments are based on a multilingual singing database
(UT-Sing) [15], which includes singing and reading speech
samples for each speaker with the same text. We collected
UT-Sing for the purpose of singing speech analysis, compar-
ing singing to speaking, and studying the effects of singing on
various speech systems. Each speaker selected 5 popular songs
in their native language. Each song was approximately 3-5 min-
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utes in duration. The speaker’s voice was recorded in a sound-
booth with a close-talk microphone while singing as well as
reading the lyrics of the same songs. Karaoke system prompts
were used for singing. While subjects were listening to the mu-
sic through headphones, the lyrics were displayed, and only the
subjects singing voice was recorded (i.e., no music was captured
within the audio stream).

For this study, four Hindi speakers, including two males and
two females were selected based on their higher singing quality.
For the remainder of this paper, we refer to the reading com-
ponent of UT-Sing corpus as (neutral) speaking. Singing and
speaking phonemes for all utterances from these four speak-
ers were manually annotated by a trained transcriber fluent in
Hindi. Table 1 shows total vowel counts for these speakers for
the three most frequently used Hindi vowels in our database.
The first row shows the International Phonetics Alphabet (IPA),
and Devanagari symbols. The slight differences in the number
of speaking and singing vowels are due to vowel insertions in
singing. Our analysis is based on these three vowels since they
had more than 60% of the total number of vowels in the phonet-
ically transcribed utterances.

 /a�/ (�) /e�/ (�) /�/ (�) 
Speaking 1441 1355 1343 

Singing 1559 1469 1414 

Table 1: Hindi vowel counts.

3. Locality Preserving Projections
Locality Preserving Projections (LPP) [13] is a linear unsuper-
vised dimensionality reduction technique that optimally pre-
serves the local neighborhood structure of the data. LPP is an
alternative to Principal Component Analysis (PCA), a classi-
cal linear unsupervised dimensionality reduction process that
projects the data along the directions with maximal variances.
The observations in a high dimensional space, usually lie on a
low dimensional manifold, and LPP and PCA seek the linearly
embedded manifold in the data set. While PCA aims to pre-
serve the global structure of the data set, LPP preserves the local
structure. LPP has proven to outperform PCA in various appli-
cations [16, 17], including speaker clustering for singing speech
[18]. LPP has also proven to be an effective feature transforma-
tion for speech recognition [19].

Given a set of n-dimensional data points: x1, . . . , xm, a lin-
ear dimensionality reduction algorithm finds a transformation
matrix A which maps these m data points to a set of vectors
in an l-dimensional subspace: y1, . . . , ym such that l << n
and yi = ATxi, i = 1, . . . ,m. LPP is in fact a linear approx-
imation of the nonlinear Laplacian Eigenmap [14]. The LPP
subspace learning algorithm first constructs an adjacency graph
G withm nodes, where each node represents a data point. Two
nodes i and j are connected if the corresponding data points
xi and xj are ”close”. The concept of ”closeness” of two data
points is defined either in the sense of k nearest neighbor (i.e.,
i and j are connected if xi is among k nearest neighbors of xj
and vice versa), or in the sense of ε-neighborhood (i.e., i and
j are connected if ‖xi − xj‖2 < ε). Next, a weight is associ-
ated with each edge or each two connected nodes. The common
weight function is the Heat Kernel:

Wij = e
−‖xi − xj‖2/

t, (1)

whereW is the weight matrix. Finally, the following objective
function is minimized:

∑

ij

(yi − yj)
2Wij (2)

Simple algebraic formulation [13] reduces the objective
function to:

XLXT a = λXDXT a (3)

whereX = [x1 . . . xm] is an n×mmatrix of data vectors,D is
a diagonal matrix such that: Dii =

∑
j

Wij , and L = D−W is

the Laplacian matrix. Eq. (3) is a generalized eigenvalue prob-
lem, and the solutions a1, . . . , al which are the eigenvectors
ordered based on their corresponding eigenvalues are columns
of an n× l matrix A such that:

yi = ATxi, A = [a1, . . . , al]. (4)

We calculated the LPP transformation matrix A for feature
vectors extracted from singing and speaking vowel train sets,
and applied this to reduce the dimension for vowel classification
of test sets. More details are presented in the next section.

4. Dimensionality analysis
Our analysis of singing and speaking dimensions is based on
vowel classification results in subspaces of the spectral feature
space. Vowel classification was performed for the three vow-
els from Table 1, which had the most number of occurrences.
For each of the four speakers, four songs were used for train-
ing, and one song for test. There was no overlap between train
and test songs. First, in order to focus on sustained vowels and
reduce the effect of coarticulation, speech frames were selected
from the 50% middle of each vowel. Next, 12-dimensional PLP
features were extracted from each frame. PLP feature vectors
were classified using a k nearest neighbor classifier. Our initial
experiments with full-dimensional feature vectors showed that
increasing parameter k generally increases vowel classification
accuracy for both speaking and singing, but for k > 12 the per-
formance improvement is not significant. Therefore, parameter
k was set to 12.

LPP dimension reduction was applied to feature vectors,
and vowel classification was performed at the frame level with a
decreasing number of dimensions: 12, 11, ..., 2, 1. Fig. 1 shows
vowel classification accuracy for each dimension. As shown,
speaking and singing have approximately the same classifica-
tion accuracies with full-dimension PLP features. This can be
interpreted as similar vowel separability for these three vow-
els with full-dimensional PLPs for speaking and singing. How-
ever, singing vowels are expected to have more variability than
speaking. Therefore, it is hypothesized that a higher number of
dimensions is required to efficiently represent singing vowels.

Fig. 1 verifies this hypothesis. From dimension 11 to 4,
both speaking and singing have similar vowel classification per-
formance to the baseline (full dimension) with standard devia-
tion of 0.5. However, from dimension 4 to 3, singing vowel
classification accuracy decreases by 9.4%, while the relative
accuracy decrease for speaking is 1.8%. With only two dimen-
sions, speaking vowel classification performance is similar to
that of the baseline, and there is a relative performance loss of
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27.7% when decreasing the dimension from 2 to 1. This implies
that the first two dimensions can efficiently represent these three
vowels for speaking, yet for singing vowels at least four dimen-
sions are required. In order to visualize this inherent dimension-
ality difference between speaking and singing, scatter plots of
3-dimensional feature vector projections for the most separable
vowel pair in this vowel set are depicted in Fig. 2. As shown,
speaking feature vectors are separable even if projected on a
2-dimensional plane, while for singing more than three dimen-
sions is required to separate feature vectors for these vowels.

To compare LPP dimensionality reduction to traditional
PCA for vowel classification, Fig. 3 illustrates the singing
vowel classification performance when reducing the dimension
from 12 to 1 for LPP and PCA subspaces. As shown, PCA
has worse performance compared with LPP for almost all di-
mensions with an average performance loss of 5%. Unlike LPP,
PCA does not have consistent performance for dimensions 12 to
4, and the classification accuracy fluctuates with a standard de-
viation of 2.1. In the next section, we will show that vowel clas-
sification results based on formant frequencies correlate with
LPP results, which implies the nonlinearity of an embedded
singing vowel space. As noted, in this study we use LPP as
a linear approximation of nonlinear manifold learning to apply
the transformation matrix trained with training vowels to the
unseen vowel test set. The next section explains dimensionality
analysis results in terms of formant space analysis.
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Figure 1: Vowel classification results for speaking and singing
when reducing the dimension from 12 to 1 in LPP subspace.
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Figure 3: Vowel classification results for singing when reducing
the dimension from 12 to 1 in LPP and PCA subspaces.
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Figure 4: Transformation of F2/F1 vowel configuration from
speaking to singing.

5. Formant analysis
Acoustic analysis of singing has shown the spectral deviation of
singing vowels from speaking due to articulatory modification
while singing [20, 21, 22]. Those studies verify the changes
in formant frequencies of sung vowels compared to spoken
vowels. While most of the previous studies analyzed isolated
sung vowels, a recent study [12] showed the variations between
singing and speaking vowel spaces in context.

We studied formant frequencies for the three Hindi vow-
els from Table 1 and related the formant space changes in the
singing vowel space compared to speaking, to dimensionality
differences between singing and speaking. For each vowel, four
formant frequencies were extracted with an LPC order = 12, in-
terval length = 0.01 sec. and analysis window length = 0.05
sec. Formant frequencies were estimated for the 50% middle
of vowels that had duration more than 0.1 sec. Fig. 4 illus-
trates how the vowel configuration in F2/F1 plane changes from
speaking to singing. The presented F2/F1 configuration is based
on mean formant frequencies. Though the distance between the
two most confusable vowels in this vowel set has increased, the
average Euclidean distance in F2/F1 plane between vowels has
been reduced by 36.9% from speaking to singing. This helps
explain why with two dimensions, speaking vowel classifica-
tion has much higher accuracy than for singing. Next, vowel
classification was performed using formant frequencies as fea-
ture vectors with the same train and test sets applied for dimen-
sionality analysis in Sec. 4. For formant based singing ver-
sus speaking dimensionality analysis, the dimension reduction
was achieved by dropping higher order formants first, which is
shown to produce similar results to LPP dimension reduction.
Table 2 summarizes the results with formant vector dimensions:
4:[F1, F2, F3, F4], 3:[F1, F2, F3], 2:[F1, F2], and 1:[F1].

Dimension 4 3 2 1

Speaking 88.9% 88.4% 82.0% 67.6%

Singing 82.6% 80.2% 68.2% 61.2%

Table 2: Vowel classification results for speaking and singing
using formant frequency features when reducing the dimension
from 4 to 1.
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Figure 2: 3-dimensional feature vector scatter plot of two vowels (one in blue, one in red) for (a) speaking and (b) singing.
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Figure 5: Accuracy ratio (%) of vowel classification using 4, 3,
2, and 1 formants to vowel classification using 4 formants for
speaking and singing.

classification has always lower performance than speaking.
However, the maximum performance loss from speaking to
singing occurs at dimension 2 (i.e., using the first two formant
frequencies). This shows that speaking vowels are much more
separable than singing vowels with the first two formants as the
only two dimensions. Fig. 5 depicts relative classification accu-
racies (i.e., classification accuracy at each dimension × 100 di-
vided by maximum classification accuracy with four formants).
As shown, with the first two formants, for speaking 92.2% of
performance with four formants is achieved, while for singing
82.6% of performance is obtained. This result is consistent with
formant configuration analysis in Fig. 4. In addition, it corre-
lates with LPP dimensionality analysis in Fig. 1, which con-
firms the intrinsic dimensionality increase of vowel space from
speaking to singing.

6. Conclusions
Singing vowel space variation from speaking was studied in
terms of dimensionality analysis. The hypothesis that singing
vowels require more dimensions than neutral speaking for ef-
ficient representation was verified based on vowel separabil-
ity analysis by reducing the dimension of spectral feature vec-
tors. LPP subspace learning was applied to represent low-
dimensional manifolds, while preserving neighborhood struc-
ture of the data. It was shown that for speaking with two LPP di-
mensions, approximately 99% of full-dimensional vowel clas-
sification accuracy was achieved. However, for singing 88% of
full-dimensional classification performance was obtained using

2-dimensional LPP feature vectors. A similar result for vowel
classification performance with the first two formant frequen-
cies, confirmed the higher intrinsic dimensionality of singing
vowel space compared to speaking. The results were also
explained based on different configurations of speaking and
singing vowels in the formant space.

This study was a first attempt to analyze dimensionality
of singing speech. It was shown that for low-dimensional
representation, singing requires more dimensions than speak-
ing. This result can be applied to acoustic modeling of singing
speech for various applications, such as speaker and language
classification for singing, and singing speech recognition and
phoneme alignment. Due to the lack of transcribed singing
speech and acoustic models for singing, and for more reliable
results phonemes were manually annotated. Therefore, the ex-
periments were conducted for a limited number of speakers, and
vowels with enough number of occurrences for statistical anal-
ysis. However, the reliability of results are based on the same
phonetic context for singing and speaking, as well as having
5 songs per speaker for a song independent analysis. Future
research includes analyzing the dimensionality of singing for
more languages, and comparing the results, and applying di-
mensionality reduction to a larger set of vowels with a wider
variety of feature vectors.

With formant frequencies as feature vectors, singing vowel
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